• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 44
  • 1
  • 1
  • Tagged with
  • 46
  • 46
  • 46
  • 44
  • 23
  • 23
  • 23
  • 18
  • 14
  • 12
  • 12
  • 12
  • 12
  • 10
  • 8
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Anisotropic mesh refinement for singularly perturbed reaction diffusion problems

Apel, Th., Lube, G. 30 October 1998 (has links)
The paper is concerned with the finite element resolution of layers appearing in singularly perturbed problems. A special anisotropic grid of Shishkin type is constructed for reaction diffusion problems. Estimates of the finite element error in the energy norm are derived for two methods, namely the standard Galerkin method and a stabilized Galerkin method. The estimates are uniformly valid with respect to the (small) diffusion parameter. One ingredient is a pointwise description of derivatives of the continuous solution. A numerical example supports the result. Another key ingredient for the error analysis is a refined estimate for (higher) derivatives of the interpolation error. The assumptions on admissible anisotropic finite elements are formulated in terms of geometrical conditions for triangles and tetrahedra. The application of these estimates is not restricted to the special problem considered in this paper.
42

FEM auf irregulären hierarchischen Dreiecksnetzen

Groh, U. 30 October 1998 (has links)
From the viewpoint of the adaptive solution of partial differential equations a finit e element method on hierarchical triangular meshes is developed permitting hanging nodes arising from nonuniform hierarchical refinement. Construction, extension and restriction of the nonuniform hierarchical basis and the accompanying mesh are described by graphs. The corresponding FE basis is generated by hierarchical transformation. The characteristic feature of the generalizable concept is the combination of the conforming hierarchical basis for easily defining and changing the FE space with an accompanying nonconforming FE basis for the easy assembly of a FE equations system. For an elliptic model the conforming FEM problem is solved by an iterative method applied to this nonconforming FEM equations system and modified by projection into the subspace of conforming basis functions. The iterative method used is the Yserentant- or BPX-preconditioned conjugate gradient algorithm. On a MIMD computer system the parallelization by domain decomposition is easy and efficient to organize both for the generation and solution of the equations system and for the change of basis and mesh.
43

Interpolation of non-smooth functions on anisotropic finite element meshes

Apel, Th. 30 October 1998 (has links)
In this paper, several modifications of the quasi-interpolation operator of Scott and Zhang (Math. Comp. 54(1990)190, 483--493) are discussed. The modified operators are defined for non-smooth functions and are suited for the application on anisotropic meshes. The anisotropy of the elements is reflected in the local stability and approximation error estimates. As an application, an example is considered where anisotropic finite element meshes are appropriate, namely the Poisson problem in domains with edges.
44

Behandlung gekrümmter Oberflächen in einem 3D-FEM-Programm für Parallelrechner

Pester, M. 30 October 1998 (has links)
The paper presents a method for generating curved surfaces of 3D finite element meshes by mesh refinement starting with a very coarse grid. This is useful for parallel implementations where the finest meshes should be computed and not read from large files. The paper deals with simple geometries as sphere, cylinder, cone. But the method may be extended to more complicated geometries. (with 45 figures)
45

Realization and comparison of various mesh refinement strategies near edges

Apel, T., Milde, F. 30 October 1998 (has links)
This paper is concerned with mesh refinement techniques for treating elliptic boundary value problems in domains with re- entrant edges and corners, and focuses on numerical experiments. After a section about the model problem and discretization strategies, their realization in the experimental code FEMPS3D is described. For two representative examples the numerically determined error norms are recorded, and various mesh refinement strategies are compared.
46

Some Remarks on the Constant in the Strengthened C.B.S. Inequality: Application to $h$- and $p$-Hierarchical Finite Element Discretizations of Elasticity Problems

Jung, M., Maitre, J. F. 30 October 1998 (has links)
For a class of two-dimensional boundary value problems including diffusion and elasticity problems it is proved that the constants in the corresponding strengthened Cauchy-Buniakowski-Schwarz (C.B.S.) inequality in the cases of h -hierarchical and p -hierarchical finite element discretizations with triangular meshes differ by the factor 0.75. For plane linear elasticity problems and triangulations with right isosceles tri- angles formulas are presented that show the dependence of the constant in the C.B.S. inequality on the Poisson's ratio. Furthermore, numerically determined bounds of the constant in the C.B.S. inequality are given for three-dimensional elasticity problems discretized by means of tetrahedral elements. Finally, the robustness of iterative solvers for elasticity problems is discussed briefly.

Page generated in 0.059 seconds