• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 44
  • 1
  • 1
  • Tagged with
  • 46
  • 46
  • 46
  • 44
  • 23
  • 23
  • 23
  • 18
  • 14
  • 12
  • 12
  • 12
  • 12
  • 10
  • 8
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Anisotropic mesh refinement in stabilized Galerkin methods

Apel, Thomas, Lube, Gert 30 October 1998 (has links) (PDF)
The numerical solution of the convection-diffusion-reaction problem is considered in two and three dimensions. A stabilized finite element method of Galerkin/Least squares type accomodates diffusion-dominated as well as convection- and/or reaction- dominated situations. The resolution of boundary layers occuring in the singularly perturbed case is accomplished using anisotropic mesh refinement in boundary layer regions. In this paper, the standard analysis of the stabilized Galerkin method on isotropic meshes is extended to more general meshes with boundary layer refinement. Simplicial Lagrangian elements of arbitrary order are used.
32

Ein Residuenfehlerschätzer für anisotrope Tetraedernetze und Dreiecksnetze in der Finite-Elemente-Methode

Kunert, G. 30 October 1998 (has links) (PDF)
Some boundary value problems yield anisotropic solutions, e.g. solutions with boundary layers. If such problems are to be solved with the finite element method (FEM), anisotropically refined meshes can be advantageous. In order to construct these meshes or to control the error one aims at reliable error estimators. For isotropic meshes such estimators are known but they fail when applied to anisotropic meshes. Rectangular (or cuboidal) anisotropic meshes were already investigated. In this paper an error estimator is presented for tetrahedral or triangular meshes which offer a much greater geometrical flexibility.
33

Implementierung eines parallelen vorkonditionierten Schur-Komplement CG-Verfahrens in das Programmpaket FEAP

Meisel, Mathias, Meyer, Arnd 30 October 1998 (has links)
A parallel realisation of the Conjugate Gradient Method with Schur-Complement preconditioning, based on a domain decomposition approach, is described in detail. Special kinds of solvers for the resulting interiour and coupling systems are presented. A large range of numerical results is used to demonstrate the properties and behaviour of this solvers in practical situations.
34

Ein technologisches Konzept zur Erzeugung adaptiver hierarchischer Netze für FEM-Schemata

Groh, U. 30 October 1998 (has links)
Adaptive finite element methods for the solution of partial differential equations require effective methods of mesh refinement and coarsening, fast multilevel solvers for the systems of FE equations need a hierarchical structure of the grid. In the paper a technology is presented for the application of irregular hierarchical triangular meshes arising from refinement by only dividing elements into four congruent triangles. The paper describes the necessary data structures and data structure management, the principles and algorithms of refining and coarsening the mesh, and also a specific assembly technique for the FE equations system. Aspects of the parallel implementation on MIMD computers with a message passing communication are included.
35

Error Estimation for Anisotropic Tetrahedral and Triangular Finite Element Meshes

Kunert, G. 30 October 1998 (has links)
Some boundary value problems yield anisotropic solutions, e.g. solutions with boundary layers. If such problems are to be solved with the finite element method (FEM), anisotropically refined meshes can be advantageous. In order to construct these meshes or to control the error one aims at reliable error estimators. For \emph{isotropic} meshes many estimators are known, but they either fail when used on \emph{anisotropic} meshes, or they were not applied yet. For rectangular (or cuboidal) anisotropic meshes a modified error estimator had already been found. We are investigating error estimators on anisotropic tetrahedral or triangular meshes because such grids offer greater geometrical flexibility. For the Poisson equation a residual error estimator, a local Dirichlet problem error estimator, and an $L_2$ error estimator are derived, respectively. Additionally a residual error estimator is presented for a singularly perturbed reaction diffusion equation. It is important that the anisotropic mesh corresponds to the anisotropic solution. Provided that a certain condition is satisfied, we have proven that all estimators bound the error reliably.
36

Realization and comparison of various mesh refinement strategies near edges

Apel, T., Milde, F. 30 October 1998 (has links) (PDF)
This paper is concerned with mesh refinement techniques for treating elliptic boundary value problems in domains with re- entrant edges and corners, and focuses on numerical experiments. After a section about the model problem and discretization strategies, their realization in the experimental code FEMPS3D is described. For two representative examples the numerically determined error norms are recorded, and various mesh refinement strategies are compared.
37

Elliptic problems in domains with edges: anisotropic regularity and anisotropic finite element meshes

Apel, T., Nicaise, S. 30 October 1998 (has links)
This paper is concerned with the anisotropic singular behaviour of the solution of elliptic boundary value problems near edges. The paper deals first with the description of the analytic properties of the solution in newly defined, anisotropically weighted Sobolev spaces. The finite element method with anisotropic, graded meshes and piecewise linear shape functions is then investigated for such problems; the schemes exhibit optimal convergence rates with decreasing mesh size. For the proof, new local interpolation error estimates in anisotropically weighted spaces are derived. Moreover, it is shown that the condition number of the stiffness matrix is not affected by the mesh grading. Finally, a numerical experiment is described, that shows a good agreement of the calculated approximation orders with the theoretically predicted ones.
38

Anisotropic mesh refinement in stabilized Galerkin methods

Apel, Thomas, Lube, Gert 30 October 1998 (has links)
The numerical solution of the convection-diffusion-reaction problem is considered in two and three dimensions. A stabilized finite element method of Galerkin/Least squares type accomodates diffusion-dominated as well as convection- and/or reaction- dominated situations. The resolution of boundary layers occuring in the singularly perturbed case is accomplished using anisotropic mesh refinement in boundary layer regions. In this paper, the standard analysis of the stabilized Galerkin method on isotropic meshes is extended to more general meshes with boundary layer refinement. Simplicial Lagrangian elements of arbitrary order are used.
39

Ein Residuenfehlerschätzer für anisotrope Tetraedernetze und Dreiecksnetze in der Finite-Elemente-Methode

Kunert, G. 30 October 1998 (has links)
Some boundary value problems yield anisotropic solutions, e.g. solutions with boundary layers. If such problems are to be solved with the finite element method (FEM), anisotropically refined meshes can be advantageous. In order to construct these meshes or to control the error one aims at reliable error estimators. For isotropic meshes such estimators are known but they fail when applied to anisotropic meshes. Rectangular (or cuboidal) anisotropic meshes were already investigated. In this paper an error estimator is presented for tetrahedral or triangular meshes which offer a much greater geometrical flexibility.
40

Parallelization of multi-grid methods based on domain decomposition ideas

Jung, M. 30 October 1998 (has links)
In the paper, the parallelization of multi-grid methods for solving second-order elliptic boundary value problems in two-dimensional domains is discussed. The parallelization strategy is based on a non-overlapping domain decomposition data structure such that the algorithm is well-suited for an implementation on a parallel machine with MIMD architecture. For getting an algorithm with a good paral- lel performance it is necessary to have as few communication as possible between the processors. In our implementation, communication is only needed within the smoothing procedures and the coarse-grid solver. The interpolation and restriction procedures can be performed without any communication. New variants of smoothers of Gauss-Seidel type having the same communication cost as Jacobi smoothers are presented. For solving the coarse-grid systems iterative methods are proposed that are applied to the corresponding Schur complement system. Three numerical examples, namely a Poisson equation, a magnetic field problem, and a plane linear elasticity problem, demonstrate the efficiency of the parallel multi- grid algorithm.

Page generated in 0.1196 seconds