• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 16
  • Tagged with
  • 16
  • 14
  • 12
  • 11
  • 8
  • 8
  • 7
  • 7
  • 6
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

My Role as a Technical Communicator in an Interactive Media Organization

La Foret, Annmarie 19 November 2002 (has links)
No description available.
12

A technical writing internship with Bluespring Software, Inc.

Rudolph, Kathryn Marie. January 2004 (has links)
Thesis (M.T.S.C.)--Miami University, Dept. of English, 2004. / Title from first page of PDF document. Includes bibliographical references (p. Xx-Xx).
13

Practicing Technical Communication in a Clinical Laboratory

Kerby, Audrey J. 02 December 2005 (has links)
No description available.
14

Report on a MTSC Internship at Golder Associates Inc

Krugh, Lisa S. 19 November 2009 (has links)
No description available.
15

Practicing Technical and Scientific Communication in a Community Health Center

Pegue, Misty Lynn 04 May 2010 (has links)
No description available.
16

AUGMENTATION AND CLASSIFICATION OF TIME SERIES FOR FINDING ACL INJURIES

Johansson, Marie-Louise January 2022 (has links)
This thesis addresses the problem where we want to apply machine learning over a small data set of multivariate time series. A challenge when classifying data is when the data set is small and overfitting is at risk. Augmentation of small data sets might avoid overfitting. The multivariate time series used in this project represent motion data of people with reconstructed ACLs and a control group. The approach was pairing motion data from the training set and using Euclidean Barycentric Averaging to create a new set of synthetic motion data so as to increase the size of the training set. The classifiers used were Dynamic Time Warping -One Nearest neighbour and Time Series Forest. In our example we found this way of increasing the training set a less productive strategy. We also found Time Series Forest to generally perform with higher accuracy on the chosen data sets, but there may be more effective augmentation strategies to avoid overfitting.

Page generated in 0.0235 seconds