Spelling suggestions: "subject:"cachine vision"" "subject:"amachine vision""
211 |
Teaching an AI to recycle by looking at scrap metal : Semantic segmentation through self-supervised learning with transformers / Lär en AI att källsortera genom att kolla på metallskrotForsberg, Edwin, Harris, Carl January 2022 (has links)
Stena Recycling is one of the leading recycling companies in Sweden and at their facility in Halmstad, 300 tonnes of refuse are handled every day where aluminium is one of the most valuable materials they sort. Today, most of the sorting process is done automatically, but there are still parts of the refuse that are not correctly sorted. Approximately 4\% of the aluminium is currently not properly sorted and goes to waste. Earlier works have investigated using machine vision to help in the sorting process at Stena Recycling. However, consistently through all these previous works, there is a problem in gathering enough annotated data to train the machine learning models. This thesis aims to investigate how machine vision could be used in the recycling process and if pre-training models using self-supervised learning can alleviate the problem of gathering annotated data and yield an improvement. The results show that machine vision models could viably be used in an information system to assist operators. This thesis also shows that pre-training models with self-supervised learning may yield a small increase in performance. Furthermore, we show that models pre-trained using self-supervised learning also appear to transfer the knowledge learned from images created in a lab environment to images taken at the recycling plant.
|
212 |
PREDICTIVE MODELS TRANSFER FOR IMPROVED HYPERSPECTRAL PHENOTYPING IN GREENHOUSE AND FIELD CONDITIONSTanzeel U Rehman (13132704) 21 July 2022 (has links)
<p> </p>
<p>Hyperspectral Imaging is one of the most popular technologies in plant phenotyping due to its ability to predict the plant physiological features such as yield biomass, leaf moisture, and nitrogen content accurately, non-destructively, and efficiently. Various kinds of hyperspectral imaging systems have been developed in the past years for both greenhouse and field phenotyping activities. Developing the plant physiological prediction model such as relative water content (RWC) using hyperspectral imaging data requires the adoption of machine learning-based calibration techniques. Convolutional neural networks (CNNs) have been known to automatically extract the features from the raw data which can lead to highly accurate physiological prediction models. Once a reliable prediction model has been developed, sharing that model across multiple hyperspectral imaging systems is very desirable since collecting the large number of ground truth labels for predictive model development is expensive and tedious. However, there are always significant differences in imaging sensors, imaging, and environmental conditions between different hyperspectral imaging facilities, which makes it difficult to share plant features prediction models. Calibration transfer between the imaging systems is critically important. In this thesis, two approaches were taken to address the calibration transfer from the greenhouse to the field. First, direct standardization (DS), piecewise direct standardization (PDS), double window piecewise direct standardization (DPDS) and spectral space transfer (SST) were used for standardizing the spectral reflectance to minimize the artifacts and spectral differences between different greenhouse imaging systems. A linear transformation matrix estimated using SST based on a small set of plant samples imaged in two facilities reduced the root mean square error (RMSE) for maize physiological feature prediction significantly, i.e., from 10.64% to 2.42% for RWC and from 1.84% to 0.11% for nitrogen content. Second, common latent space features between two greenhouses or a greenhouse and field imaging system were extracted in an unsupervised fashion. Two different models based on deep adversarial domain adaptation are trained, evaluated, and tested. In contrast to linear standardization approaches developed using the same plant samples imaged in two greenhouse facilities, the domain adaptation extracted non-linear features common between spectra of different imaging systems. Results showed that transferred RWC models reduced the RMSE by up to 45.9% for the greenhouse calibration transfer and 12.4% for a greenhouse to field transfer. The plot scale evaluation of the transferred RWC model showed no significant difference between the measurements and predictions. The methods developed and reported in this study can be used to recover the performance plummeted due to the spectral differences caused by the new phenotyping system and to share the knowledge among plant phenotyping researchers and scientists.</p>
|
213 |
Development and Evaluation of a Machine Vision System for Digital Thread Data Traceability in a Manufacturing Assembly EnvironmentAlexander W Meredith (15305698) 29 April 2023 (has links)
<p>A thesis study investigating the development and evaluation of a computer vision (CV) system for a manufacturing assembly task is reported. The CV inference results are compared to a Manufacturing Process Plan and an automation method completes a buyoff in the software, Solumina. Research questions were created and three hypotheses were tested. A literature review was conducted recognizing little consensus of Industry 4.0 technology adoption in manufacturing industries. Furthermore, the literature review uncovered the need for additional research within the topic of CV. Specifically, literature points towards more research regarding the cognitive capabilities of CV in manufacturing. A CV system was developed and evaluated to test for 90% or greater confidence in part detection. A CV dataset was developed and the system was trained and validated with it. Dataset contextualization was leveraged and evaluated, as per literature. A CV system was trained from custom datasets, containing six classes of part. The pre-contextualization dataset and post-contextualization dataset was compared by a Two-Sample T-Test and statistical significance was noted for three classes. A python script was developed to compare as-assembled locations with as-defined positions of components, per the Manufacturing Process Plan. A comparison of yields test for CV-based True Positives (TPs) and human-based TPs was conducted with the system operating at a 2σ level. An automation method utilizing Microsoft Power Automate was developed to complete the cognitive functionality of the CV system testing, by completing a buyoff in the software, Solumina, if CV-based TPs were equal to or greater than human-based TPs.</p>
|
Page generated in 0.0576 seconds