• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 77
  • 26
  • 15
  • 10
  • 9
  • 3
  • 3
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 237
  • 68
  • 63
  • 57
  • 54
  • 45
  • 42
  • 41
  • 39
  • 37
  • 35
  • 34
  • 33
  • 32
  • 31
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
201

Optimisation de la technique de dissection sous muqueuse à l’aide d’un bistouri à jet d’eau haute-pression pulsée pour le traitement endoscopique des tumeurs superficielles du tube digestif / Endoscopic submucosal dissection optimizations using a water jet system with high pulsed pressure for the endoscopic treatment of superficial tumors in the digestive tract

Pioche, Mathieu 24 September 2015 (has links)
Dans cette thèse, nous avons travaillé sur les différents versants de la technique de dissection sous-muqueuse et les problèmes que pose ce geste quasi chirurgical dans des unités d'endoscopie initialement médicales. Tout d'abord, nous avons travaillé sur la formation à la technique en développant un modèle d'apprentissage sur colon de bovin plus adapté à la situation européenne où les lésions colo-rectales sont les plus fréquentes. Ce modèle de rectum de bovin, simple à trouver et à préparer permet une formation dans des conditions plus proches de la paroi colique humaine que celles offertes par l'estomac de cochon. Un travail à plus grande échelle évaluant les bénéfices d'une aide à l'apprentissage par un logiciel interactif dédié mené sur ce modèle avec 37 étudiants français et japonais est en cours d'analyse et sera publié prochainement. Ensuite, nous avons réfléchi à la stratégie de la procédure pour la rendre plus simple en évaluant précocement la technique du tunnel pour la dissection des lésions œsophagiennes. Cette stratégie permet de maintenir une traction sur les bords lésionnels et nous offrent une sorte de triangulation en élargissant physiquement la zone de travail. Cette stratégie est devenue un standard pour les résections œsophagiennes dans de nombreuses équipes. Enfin, nous avons travaillé conjointement avec la société Nestis® au développement d'un outil permettant d'optimiser la procédure de dissection sous-muqueuse en associant les bénéfices des bistouris bi fonction (injectant et coupant avec le même outil}, de la haute pression pulsée et des solutions macromoléculaires visqueuses. Le système Nestis® permet pour la première fois cette association et a démontré son intérêt en termes de sécurité et de performance par rapport à la méthode classique utilisant l'aiguille et un bistouri électrique conventionnel. Avec cet outil bi fonction, il n'est plus nécessaire de changer d'instrument puisque toutes les étapes de la procédure sont désormais réalisées avec un seul et même outil. D'autres projets sont déjà prévus avec ce matériel pour étudier ses bénéfices et sa sécurité en dissection colique humaine qui est réputée comme la plus difficile compte tenu de la finesse de la paroi. Enfin, ce matériel offre la possibilité d'injecter sous pression des principes actifs qui pourrait dans le futur permettre de prévenir la survenue de sténoses œsophagiennes ou diriger la cicatrisation. Nous avons ainsi travailler avec la pharmacie de l'hôpital Edouard Herriot pour stabiliser la solution macromoléculaires de mélange de glycérol pour permettre son utilisation en pratique quotidienne / First of all, we worked on the training for unexperienced operators by developing a bovine colon model more adapted to the European situation where colo-rectal lesions are the most common. This model of rectum from bovine, easy to find and to prepare allows training in conditions most close to the human colonic wall than those offered by the pig stomach. Furthermore, such models allows to teach the initial skills but avoiding the risk of adverse events for the first procedures in humans. A future work evaluating the benefits of a learning support by a dedicated interactive software on this model with 37 french and Japanese students is now being analyzed and will be reported soon. Then we thought about the strategy of the procedure in order to make it more simple using the tunnel technique to perform ESD for the esophageal lesions. This strategy helps to maintain traction on the edges and offers a sort of triangulation physically expanding the working space. This strategy has become a standard for esophageal resections in many teams and we still work to improve its efficacy. Finally, we worked jointly with Nestis® Company to develop a tool to optimize the submucosal dissection procedure by combining the benefits of the catheters bi function (injecting and cutting with the same tool), but adding high pulsed pressure and capability to inject viscous macromolecular solutions. The Nestis® system allows for the first time this association and demonstrated his interest in terms of security and performance compared with the conventional method using the needle and a conventional electrocautery device. With this bi function tool, it is not necessary to change instrument frequently since all stages of the procedure are now done with a single device. Other projects are already included with this material to explore its benefits and its safety in human colonic dissection that is deemed as the most difficult due to the thinner wall. Finally, this material offers the possibility to inject pressurized active drugs which could be used in the future to prevent the occurrence of esophageal strictures or to direct healing. We also worked with the hospital Edouard Herriot pharmacy to stabilize the solution glycerol mix to allow its use in daily practice in our unit
202

Metabolic Adaptation For Utilization Of Short-Chain Fatty Acids In Salmonella Typhimurium : Structural And Functional Studies On 2-methylcitrate Synthase, Acetate And Propionate Kinases

Chittori, Sagar 07 1900 (has links) (PDF)
Three-dimensional structures of proteins provide insights into the mechanisms of macromolecular assembly, enzyme catalysis and mode of activation, substrate-specificity, ligand-binding properties, stability and dynamical features. X-ray crystallography has become the method of choice in structural biology due to the remarkable methodological advances made in the generation of intense X-ray beams with very low divergence, cryocooling methods to prolong useful life of irradiated crystals, sensitive methods of Xray diffraction data collection, automated and fast methods for data processing, advances and automation in methods of computational crystallography, comparative analysis of macromolecular structures along with parallel advances in biochemical and molecular biology methods that allow production of the desired biomolecule in quantities sufficient for X-ray diffraction studies. Advances in molecular biology techniques and genomic data have helped in identifying metabolic pathways responsible for metabolism of short-chain fatty acids (SCFAs). The primary objective of this thesis is application of crystallographic techniques for understanding the structure and function of enzymes involved in the metabolism of SCFAs in S. typhimurium. Pathways chosen for the present study are (i) propionate degradation to pyruvate and succinate by 2-methylcitrate pathway involving gene products of the prp operon, (ii) acetate activation to acetyl-CoA by AckA-Pta pathway involving gene products of the ack-pta operon, (iii) threonine degradation to propionate involving gene products of the tdc operon, (iv) 1,2-propanediol (1,2-PD) degradation to propionate involving gene products of the pdu operon. These metabolic pathways utilize a large number of enzymes with diverse catalytic mechanisms. The main objectives of the work include structural and functional studies on 2-methycitrate synthase (PrpC), acetate kinase (AckA), propionate kinase isoforms (PduW and TdcD) and propanol dehydrogenase (PduQ) from S. typhimurium. In the present work, these proteins were cloned, expressed, purified and characterized. The purified proteins were crystallized using standard methods. The crystals were placed in an X-ray beam and diffraction data were collected and used for the elucidation of structure of the proteins. The structures were subjected to rigorous comparative analysis and the results were complemented with suitable biochemical and biophysical experiments. The thesis begins with a review of the current literature on SCFAs metabolism in bacteria, emphasizing studies carried out on S. typhimurium and the closely related E. coli as well as organisms for which the structure of a homologue has been determined (Chapter 1). Metabolic pathways involving acetate utilization by activation to acetyl- CoA, propionate degradation to pyruvate and succinate, anaerobic degradation of Lthreonine to propionate and, 1,2-PD degradation to propionate are described in this chapter. Common experimental and computational methods used during the course of investigations are described in Chapter 2, as most of these are applicable to all structure determinations and analyses. Experimental procedures described here include cloning, overexpression, purification, crystallization and intensity data collection. Computational methods covered include details of various programs used during data processing, structure solution, refinement, model building, validation and structural analysis. In Chapter 3, X-ray crystal structure of S. typhimurium 2-methylcitrate synthase (StPrpC; EC 2.3.3.5) determined at 2.4 Å resolution and its functional characterization is reported. StPrpC catalyzes aldol-condensation of oxaloacetate and propionyl-CoA to 2- methylcitrate and CoA in the second step of 2-methylcitrate pathway. StPrpC forms a dimer in solution and utilizes propionyl-CoA more efficiently than acetyl-CoA or butyryl- CoA. The polypeptide fold and the catalytic residues of StPrpC are conserved in citrate synthases (CSs) suggesting similarities in their functional mechanisms. Tyr197 and Leu324 of StPrpC are structurally equivalent to the ligand binding residues His and Val, respectively, of CSs. These substitutions might be responsible for the specificities for acyl-CoAs of these enzymes. Structural comparison with the ligand free (open) and bound (closed) states of CSs showed that StPrpC represents the first apo structure among xvi CS homologs in a nearly closed conformation. StPrpC molecules were organized as decamers, composed of five identical dimer units, in the P1 crystal cell. Higher order oligomerization of StPrpC is likely to be due to high pH (9.0) of the crystallization condition. In gram-negative bacteria, a hexameric form, believed to be important for regulation of activity by NADH, is also observed. Structural comparisons with hexameric E. coli CS suggested that the key residues involved in NADH binding are not conserved in StPrpC. Structural and functional studies on S. typhimurium acetate kinase (StAckA; EC 2.7.2.1) are described in Chapter 4. Acetate kinase, an enzyme widely distributed in the bacteria and archaea domains, catalyzes the reversible phosphoryl transfer from ATP to acetate in the presence of a metal ion during acetate metabolism. StAckA catalyzes Mg2+ dependent phosphate transfer from ATP to acetate 10 times more efficiently when compared to propionate. Butyrate was found to inhibit the activity of the enzyme. Kinetic analysis showed that ATP and Mg2+ could be effectively substituted by other nucleoside 5′-triphosphates (GTP, UTP and CTP) and divalent cations (Mn2+ and Co2+), respectively. The X-ray crystal structure of StAckA was determined in two different forms at 2.70 Å (Form-I) and 1.90 Å (Form-II) resolutions, respectively. StAckA contains a fold with the topology βββαβαβα, similar to those of glycerol kinase, hexokinase, heat shock cognate 70 (Hsc70) and actin. StAckA consists of two domains with an active site cleft at the domain interface. Comparison of StAckA structure with those of ligand complexes of other acetokinase family proteins permitted the identification of residues essential for substrate binding and catalysis. Conservation of most of these residues points to both structural and mechanistic similarities between enzymes of this family. Examination of the active site pocket revealed a plausible structural rationale for the greater specificity of the enzyme towards acetate than propionate. Intriguingly, a major conformational reorganization and partial disorder in a large segment consisting of residues 230-297 of the polypeptide was observed in Form-II. Electron density corresponding to a plausible xvii citrate was observed at a novel binding pocket present at the dimeric interface. Citrate bound at this site might be responsible for the observed disorder in the Form-II structure. A similar ligand binding pocket and residues lining the pocket were also found to be conserved in other structurally known enzymes of acetokinase family. These observations and examination of enzymatic reaction in the presence of citrate and succinate (tricarboxylic acid cycle intermediates) suggested that binding of ligands at this pocket might be important for allosteric regulation in this family of enzymes. Propionate kinase (EC 2.7.2.15) catalyzes reversible conversion of propionylphosphate and ADP to propionate and ATP. S. typhimurium possess two isoforms of propionate kinase, PduW and TdcD, involved in 1,2-propanediol degradation to propionate and in L-threonine degradation to propionate, respectively. In Chapter 5, structural and functional analyses of PduW and TdcD, carried out to gain insights into the substrate-binding pocket and catalytic mechanism of these enzymes, are described. Both isoforms showed broad specificity for utilization of SCFAs (propionate > acetate), nucleotides (ATP ≈ GTP > UTP > CTP) and metal ions (Mg2+ ≈ Mn2+). Molecular modeling of StPduW indicated that the enzyme is likely to adopt a fold similar to other members of acetokinase family. The residues at the active site are well conserved. Differences in the size of hydrophobic pocket where the substrate binds, particularly the replacement of a valine residue in acetate kinases (StAckA: Val93) by an alanine in propionate kinases (StPduW: Ala92; StTdcD: Ala88), could account for the observed greater affinity towards their cognate SCFAs. Crystal structures of TdcD from S. typhimurium in complex with various nucleotides were determined using native StTdcD as the phasing model. Nucleotide complexes of StTdcD provide a structural rationale for the broad specificity of the enzyme for its cofactor. Binding of ethylene glycol close to the γ-phosphate of GTP might suggest a direct in-line transfer mechanism. The thesis concludes with a brief discussion on the future prospects of the work. xviii Projects carried out as part of Master of Science projects and as additional activity during the course of the thesis work are described in three appendices. Analysis of the genomic sequences of E. coli and S. typhimurium has revealed the presence of hpa operon essential for 4-hydroxyphenylacetate (4-HPA) catabolism. S. typhimurium hpaE gene encodes for a 55 kDa polypeptide (StHpaE; EC 1.2.1.60) which catalyzes conversion of 5-carboxymethyl-2-hydroxymuconic semialdehyde (CHMS) to 5-carboxymethyl-2-hydroxymuconic aldehyde (CHMA) in 4-HPA metabolism. Sequence analysis of StHpaE showed that it belongs to aldehyde dehydrogenase (ALDH) superfamily and possesses residues equivalent to the catalytic glutamate and cysteine residues of homologous enzymes (Appendix A). The gene was cloned in pRSET C expression vector and the recombinant protein was purified using Ni-NTA affinity chromatography. The enzyme forms a tetramer in solution and shows catalytic activity toward the substrate analog adipic semialdehyde. Crystal structure of StHpaE revealed that it contains three domains; two dinucleotide-binding domains, a Rossmann-fold type domain, and a small three-stranded β-sheet domain, which is involved in tetrameric interactions. NAD+-bound crystal of StHpaE permitted identification of active site pocket and residues important for ligand anchoring and catalysis. Mutarotases or aldose 1-epimerases (EC 5.1.3.3) play a key role in carbohydrate metabolism by catalyzing the interconversion of α- and β-anomers of sugars. S. typhimurium YeaD (StYeaD), annotated as aldose 1-epimerase, has very low sequence identity with other well characterized mutarotases. In Appendix B, the crystal structure of StYeaD determined in orthorhombic and monoclinic crystal forms at 1.9 Å and 2.5 Å resolutions, respectively are reported. StYeaD possesses a fold similar to those of galactose mutarotases (GalMs). Structural comparison of StYeaD with GalMs has permitted identification of residues involved in catalysis and substrate anchoring. In spite xix of the similar fold and conservation of catalytic residues, minor but significant differences in the substrate binding pocket were observed compared to GalMs. Therefore, the substrate specificity of YeaD like proteins seems to be distinct from those of GalMs. Pepper Vein Banding Virus (PVBV) is a member of the genus potyvirus and infects Solanaceae plants. PVBV is a single-stranded positive-sense RNA virus with a genome-linked viral protein (VPg) covalently attached at the 5'-terminus. In order to establish the role of VPg in the initiation of replication of the virus, recombinant PVBV VPg was over-expressed in E. coli and purified using Ni-NTA affinity chromatography (Appendix C). PVBV NIb was found to uridylylate Tyr66 of VPg in a templateindependent manner. Studies on N- and C-terminal deletion mutants of VPg revealed that N-terminal 21 and C-terminal 92 residues of PVBV VPg are dispensable for in vitro uridylylation by PVBV NIb.
203

Probing Macromolecular Reactions At Reduced Dimensionality : Mapping Of Sequence Specific And Non-Specific Protein-Ligand lnteractions

Ganguly, Abantika 03 1900 (has links) (PDF)
During the past decade the effects of macromolecular crowding on reaction pathways is gaining in prominence. The stress is to move out of the realms of ideal solution studies and make conceptual modifications that consider non-ideality as a variable in our calculations. In recent years it has been shown that molecular crowding exerts significant effects on all in vivo processes, from DNA conformational changes, protein folding to DNA-protein interactions, enzyme pathways and signalling pathways. Both thermodynamic as well as kinetic parameters vary by orders of magnitude in uncrowded buffer system as compared to those in the crowded cellular milieu. Ignoring these differences will restrict our knowledge of biology to a “model system” with few practical understandings. The recent expansion of the genome database has stimulated a study on numerous previously unknown proteins. This has whetted our thirst to model the cellular determinants in a more comprehensive manner. Intracellular extract would have been the ideal solution to re-create the cellular environment. However, studies conducted in this solution will be contaminated by interference with other biologically active molecule and relevant statistical data cannot be extracted out from it. Recent advances in methodologies to mimic the cellular crowding include use of inert macromolecules to reduce the volume occupancy of target molecules and the use of immobilization techniques to increase the surface density of molecules in a small volumetric region. The use of crowding agents often results in non-specific interaction and side-reactions like aggregation of the target molecules with the crowding agents themselves. Immobilization of one of the interacting partners reduces the probability of aggregation and precipitation of bio-macromolecules by restricting their degrees of freedom. Covalent linkage of molecules on solid support is used extensively in research for creating a homogeneous surface of bound molecules which can be interrogated for their reactivity. However, when it comes to biomolecules, direct immobilization on solid support or use of organic linkers often results in denaturation. The use of bio-affinity immobilization techniques can help us overcome this problem. Since mild conditions are needed to regenerate such a surface, it finds universal applicability as bio-memory chips. This thesis focuses on our attempts to design a physiologically viable immobilization technique for following rotein-protein/protein-DNA interactions. The work explores the mechanism for biological interactions related to transcription process in E. coli. Chapter 1 deals with the literary survey of the importance and effects of molecular crowding on biological reactions. It gives a brief history of the efforts been made so far by experimentalists, to mimic macromolecular crowding and the methods applied. The chapter tries to project an all-round perspective of the pros and cons of different immobilization techniques as a means to achieve a high surface density of molecules and the advancements so far. Chapter 2 deals with the detailed technicality and applicability of the Langmuir-Blodgett method. It discusses the rationale behind our developing this technique as an alternate means of bio-affinity immobilization, under physiologically compatible conditions. It then goes on to describe our efforts to follow the sequence-specific and sequential assembly process of a functional RNA polymerase enzyme with one immobilized partner and also explore the role of omega subunit of RNAP in the reconstitution pathway. This chapter uses the assembly process of a multi-subunit enzyme to evaluate the efficiency of the LB system as a universal two-dimensional scaffold to follow sequence-specific protein-ligand interaction. Chapter 3 discusses the application of LB technique to quantitatively evaluate the kinetics and thermodynamics of promoter-RNA polymerase interaction under conditions of reduced dimensionality. Here, we follow the interaction of T7A1 phage promoter with Escherichia coli RNA polymerase using our Langmuir-Blodgett technique. The changes in mechanistic pathway and trapping of kinetic intermediates are discussed in detail due to the imposed restriction in the degrees of freedom of the system. The sensitivity of this detection method is compared vis-a-vis conventional immobilization methods like SPR. This chapter firmly establishes the universal application of LB technique as a means to emulate molecular crowding and as a sensitive assay for studying the effects of such crowding on vital biological reaction pathway. Chapter 4 describes the mechanistic pathway for the physical binding of MsDps1 protein with long dsDNA in order to physically protect DNA during oxidative stress. The chapter describes in detail the mechanism of physical sequestering of non-specific DNA strands and compaction of the genome under conditions where a kinetic bottleneck has been applied. The data obtained is compared with results obtained in the previous chapter for the sequence-specific DNA-protein interaction in order to understand the difference in recognition process between regulatory and structural proteins binding to DNA. Chapter 5 deals with the evaluation of the σ-competition model in E. coli for three different sigma factors (all belonging to the σ-70 family). Here again, we have evaluated the kinetic and thermodynamic parameters governing the binding of core RNAP with its different sigma factors (σ70, σ32and σ38) and performed a comparative study for the binding of each sigma factor to its core using two different non-homogeneous immobilization techniques. The data has been analyzed globally to resolve the discrepancies associated with establishing the relative affinity of the different sigma factors for the same core RNA polymerase under physiological conditions. Chapter 6 summarizes the work presented in this thesis. In the Appendix section we have followed the unzipping of promoter DNA sequence using Optical Tweezers in an attempt to follow the temporal fluctuations occurring in biological reactions in real time and at a single molecule level.
204

AN UNDERSTANDING OF MUSSEL ADHESION TO INFLUENCE MATERIALS DEVELOPMENT

Samuel L Huntington (8983913) 12 October 2021 (has links)
<p>The development of new materials has been inspired by lessons learned from natural systems. In the area of underwater adhesion and adhesives, inspiration has come from the complex protein adhesives generated by marine organism such as barnacle and mussels. These protein systems have a high incorporation of a unique amino acid, dihydroxyphenylalanine, and provides the unique adhesive qualities synthetic systems strive to emulate.</p> <p>By understanding how marine mussels stick to a variety of surfaces, new strategies can be explored for preventing the adhesion of biological organisms to various substrates. A continuous concern for marine vessels is the detrimental impact caused by biofouling on the hull of the ship. Fuel consumption can increase as the vessel’s drag increasing fuel consumption and non-native species can be introduced into new environments. Taking inspiration from catechol curing, new oxidative surfaces were investigated as potential antifouling coatings.</p> <p>Further insight into the marine mussels ability to apply and cure its adhesive on a variety of substrate has also inspired various synthetic polymers. The catechol moiety can be incorporated into a polymer backbone to give a new solvent based adhesive. Further investigation of the poly(styrene-co-(3,4-dihydroxystyrene)) adhesive system was done to formulate an underwater adhesive for unique use cases. A terpolymer was also explored as an ideal adhesive taking inspiration from the mussels by incorporating flexible, stiff, and sticky components to give a tunable adhesive.</p> <p>Having a strong bonding synthetic adhesive that can be used on a laboratory scale is good for academic investigation, but not of use outside the lab if it cannot easily be produced on a commercial scale. With the goal of large scale synthesis, a new polymerization method was introduced addressing some of the issues currently preventing commercial scale production.</p><br>
205

Structural And Functional Studies Of Neisserial Lactoferrin Binding Proteins

Ravi Yadav (11850101) 17 December 2021 (has links)
<p>Two species of <i>Neisseria</i>, <i>N. meningitidis</i> and <i>N. gonorrhoeae</i>, are obligate human pathogens that cause meningitis and gonorrhea, respectively. Although generally asymptomatic, <i>N. meningitidis</i> can cause invasive meningococcal disease with high mortality rate. Due to emerging antibiotic resistance strains of <i>N. gonorrhoeae</i>, the Centers for Disease Control and Prevention (CDC) have designated it as an urgent threat to public health. Therefore, immediate interventions are required for fight against these Neisserial pathogens. Iron is an essential nutrient for all bacteria, including <i>Neisseria</i>. However, free iron is scarce in human, therefore, <i>Neisseria</i> have evolved to acquire iron from host proteins. These iron acquisition systems are immunogenic and important for infection and are promising therapeutic targets.</p> <p> In the host, lactoferrin sequesters free iron and limits iron availability to pathogens. However, <i>Neisseria</i> have evolved machinery to hijack iron directly from lactoferrin itself. Lactoferrin binding proteins, LbpA and LbpB, are outer membrane proteins that together orchestrate the acquisition of iron from lactoferrin. Additionally, LbpB serves an additional role in providing protection against host cationic antimicrobial peptides and innate immune response. Despite studies aimed at deciphering the roles of LbpA and LbpB, the molecular mechanisms underpinning iron acquisition and immune protection remain unknown. Here, we investigated the role of the lactoferrin binding proteins in iron acquisition and protection against cationic antimicrobial peptides. We obtained three-dimensional structures of <i>Neisseria</i> LbpA and LbpB in complex with lactoferrin using cryo-electron microscopy and X-ray crystallography. These structures show that both LbpA and LbpB bind to C-lobe of lactoferrin, albeit at distinct sites. Structural analyses show that while lactoferrin maintains its iron-bound closed conformation in the LbpB-lactoferrin complex, it undergoes a large conformational change from an iron-bound closed to an iron-free open conformation upon binding to LbpA. This observation suggest that LbpA alone can trigger the extraction of iron from lactoferrin. Our studies also provide an explanation for LbpB’s preference towards holo-lactoferrin over apo-lactoferrin and LbpA’s inability to distinguish between holo- and apo-lactoferrin. Furthermore, using mutagenesis and binding studies, we show that anionic loops in the C-lobe of LbpB contribute to binding the cationic antimicrobial peptide lactoferricin. Solution scattering studies of the LbpB-lactoferricin complex showed that LbpB undergoes a small conformational change upon peptide binding.</p> Together, our studies provide structural insights into the role of the lactoferrin binding proteins in iron acquisition and evasion of the host immune defenses. Moreover, this work lays the foundation for structure-based design of therapeutics against <i>Neisseria</i> targeting the lactoferrin binding proteins.
206

CtBPs and IRF3 at the Intersection of Transcriptional Regulation by Macromolecular Complexes

Jecrois, Anne M. 13 May 2021 (has links)
Transcriptional deregulation has emerged as one of the leading causes in various human diseases. More than fifty percent of cancers arise due to frequent mutations in genes regulating transcription. Higher-order assembly via protein-protein interactions is one common mechanism of transcriptional regulation. Despite their critical role in regulating gene transcription and therapeutic relevance, detailed mechanistic understanding of these assemblies remains scarce. The primary focus of this thesis is to uncover important structural principles underlying the assembly and stability of multi-domain protein assemblies by characterizing components of the IFNβ enhanceosome and the CtBP-mediated repression complex. Using a combination of biochemical and structural analyses, I showed that the transcriptional activator C-terminal binding protein 2 (CtBP2) is a tetramer by solving the 3.6Å cryoEM structure of CtBP2. I highlighted the types of interactions that stabilize the homo-tetramer and showed the relevance of the tetramer in CtBP2 transcriptional activity. Second, I used an integrative approach to investigate the structural features leading to activation of interferon regulator factor 3 (IRF3) and its interaction with DNA. Although this work mostly focused on components of the CtBP2-mediated complex and IFNβ enhanceosome, the principles described here can be applied to other complexes. Therefore, these studies provide an overall understanding on how other macromolecular complexes regulate gene transcription. Furthermore, our structural-based analyses will provide a basis for designing drugs that can regulate gene transcription in cancer and immunological disorders.
207

Controlled Transfer Of Macroscopically Organized Nanoscopically Patterned Sub–10 nm Features onto 2D Crystalline and Amorphous Materials

Tyson C Davis (9121889) 05 August 2020 (has links)
<div>Surface level molecules act as an interface that mediates between the surface and the environment. In this way, interfacial molecules are responsible for conferring characteristics of relevance to many modern material science problems, such as electrical conductivity and wettability. For many applications, such as organic photovoltaics and nanoelectronics, macroscopic placement of chemical patterns at the sub-10 nm must be achieved to advance next generation device applications.</div><div><br></div><div>In the work presented here, we show that sub-10 nm orthogonal features can be prepared by translating the building principles of the lipid bilayer into striped phase lipids on 2D materials (e.g. highly ordered pyrolytic graphite (HOPG), MoS2). Macroscopic patterning of these nanoscopic elements is achieved via Langmuir Schafer deposition of polymerizable diyne amphiphiles. On the Langmuir trough, amphiphiles at the air water interface are ordered into features that can be observed on the macroscale using Brewster angle microscopy. Upon contact of the 2D material with the air-water interface the macroscopic pattern on the trough is transferred to the 2D material creating a macroscopic pattern consisting of sub-10 nm orthogonal chemistries. We also show here how hierarchical ordering can be accomplished via noncovalent microcontact printing of amphiphiles onto 2D materials. Microcontact printing allows a greater measure of control over the placement and clustering of interfacial molecules.</div><div><br></div><div>The alkyl chain/surface enthalpy has a great deal of influence over the ordering of amphiphiles at the sub-nm scale. Here, we examine this influence by depositing diyne amphiphiles onto MoS2 which has a weaker alkyl adsorption enthalpy compared to HOPG. We found that dual-chain amphiphiles deposited on MoS2 adopt a geometry that maximized the molecule-molecule interaction compared to the geometry adopted on HOPG.</div><div><br></div><div>Finally, we show how the hierarchical pattern of diyne amphiphiles can be transferred off of the 2D material onto an amorphous material. This is done by reacting the amorphous material with the conjugated backbone of the diyne moiety through a hydrosilylation reaction to exfoliate the film from the 2D crystalline material. The resulting polymer ‘skin’ has many applications were controlling interfacial properties of an amorphous material is important.</div>
208

Investigation of Ionically-Driven Structure-Property Relationships in Polyelectrolyte Networks

Jessica L Sargent (9175775) 29 July 2020 (has links)
<div>Despite the abundant current applications for ionic hydrogels, much about the stimuli-responsive behavior of these materials remains poorly understood. Due to the soft nature of these materials, the number of traditional characterization methods which can be applied to these systems is limited. Many studies have been conducted to characterize bulk property responses of these materials, and experimental studies have been produced examining the distribution of free ions around single polyelectrolyte chains. However, little experimental work has been published in which molecular-scale interactions are elucidated in confined polyelectrolyte networks. Furthermore, the way in which responsive properties, other than bulk swelling capacity, scale with ionic fraction in mixed polyelectrolyte-non-polyelectrolyte hydrogel systems has not been thoroughly investigated.</div><div>The distribution and strength of polymer-counter-ion bonds has a remarkable effect on hydrogel properties such as absorption capacity, mechanical strength, and size and chemical selectivity. In order to tailor these properties for targeted applications in ionic environments, it is imperative that we thoroughly understand the character of these polymer-ion interactions and their arrangement within the bulk hydrogel. In order to do so, however, non-traditional methods of analysis must be employed.</div><div>This dissertation focuses on a model part-ionic hydrogel system, poly(sodium acrylate-co-acrylamide), in order to assess not only the polymer-counter-ion interactions but also the impact of gel ionic fraction on these interactions and the responses which they induce in gel performance properties. A model alkali (NaCl), alkaline earth (CaCl2), and transition (CuSO4) metal salt are employed to investigate changes in polymer properties from the macroscale to the nanoscale. The aim of this dissertation is to lay the foundation for the development of fundamental structure-property relationships by which we may fully understand the ionically-induced performance properties of polyelectrolyte networks.</div>
209

Adipocyte Insulin-Mediated Glucose Transport: The Role of Myosin 1c, and a Method for <em>in vivo</em> Investigation: A Dissertation

Hagan, G. Nana 17 December 2008 (has links)
The importance of insulin delivery and action is best characterized in Type 2 Diabetes, a disease that is becoming a pandemic both nationally and globally. Obesity is a principal risk factor for Type 2 Diabetes, and adipocyte function abnormalities due to adipose hypertrophy and hyperplasia, have been linked to obesity. Numerous reports suggest that the intracellular and systemic consequences of adipocyte function abnormalities include adipocyte insulin resistance, enhanced production of free fatty acids, and production of inflammatory mediators. A hallmark of adipocyte insulin sensitivity is the stimulation of glucose transporter isoform 4 (GLUT4) trafficking events to promote glucose uptake. In the Type 2 diabetic and insulin resistant states the mechanism behind insulin-stimulated GLUT4 trafficking is compromised. Therefore, understanding the role of factors involved in glucose-uptake in adipose tissue is of great importance. Studies from our laboratory suggest an important role for the unconventional myosin, Myo1c, in promoting insulin-mediated glucose uptake in cultured adipocytes. Our observations suggest that depletion of Myo1c in cultured adipocytes results in a significant reduction in the ability of adipocytes to take up glucose following insulin treatment, suggesting Myo1c is required for insulin-mediated glucose uptake. A plausible mechanism by which Myo1c promotes glucose uptake in adipocytes has been suggested by further work from our laboratory in which expression of fluorescently-tagged Myo1c in cultured adipocytes induces significant membrane ruffling at the cell periphery, insulin-independent GLUT4 translocation to the cell periphery, and accumulation of GLUT4 in membrane ruffling regions. Taken together Myo1c seems to facilitate glucose uptake through remodeling of cortical actin. In the first part of this thesis I, in collaboration with others, uncovered a possible mechanism through which Myo1c regulates adipocyte membrane ruffling. Here we identified a novel protein complex in cultured adipocytes, comprising Myo1c and the mTOR binding partner, Rictor. Interestingly our studies in cultured adipocytes suggest that the Rictor-Myo1c complex is biochemically distinct from the Rictor-mTOR complex of mTORC2. Functionally, only depletion of Rictor but not Myo1c results in decreased Akt phosphorylation at serine 473, but depletion of either Rictor or Myo1c results in compromised cortical actin dynamic events. Furthermore we observed that whereas the overexpression of Myo1c in cultured adipocytes causes remarkable membrane ruffling, Rictor depletion in cells overexpressing Myo1c significantly reduces these ruffling events. Taken together our findings suggest that Myo1c, in conjunction with Rictor, modulates cortical actin remodeling events in cultured adipocytes. These findings have implications for GLUT4 trafficking as GLUT4 has been previously observed to accumulate in Myo1c-induced membrane ruffles prior to fusion with the plasma membrane. During our studies of adipocyte function we noticed that current siRNA electroporation methods present numerous limitations. To silence genes more effectively we employed a lentivirus-mediated shRNA delivery system, and to standardize this technology in cultured adipocytes we targeted Myo1c and MAP4K4. Using this technology we were able to achieve clear advantages over siRNA oligonucleotide electroporation techniques in stability and permanence of gene silencing. Furthermore we showed that the use of lentiviral vectors in cultured adipocytes did not affect insulin signaling or insulin-mediated glucose uptake events. Despite our inability to use lentiviral vectors to achieve gene silencing in mice we were able to achieve adipose tissue-specific gene silencing effects in mice following manipulation of the lentiviral conditional silencing vector, and then crossing resulting founders with aP2-Cre mice. Interestingly however, only founders from the MAP4K4 conditional shRNA vector, but not founders from the Myo1c conditional shRNA vector, showed gene knockdown, possibly due to position-effect variegation. Taken together, findings from these studies are important because they present an alternative means of achieving gene silencing in cultured adipocytes, with numerous advantages not offered by siRNA oligonucleotide electroporation methods. Furthermore, the in vivo, adipose tissue-specific RNAi studies offer a quick, inexpensive, and less technically challenging means of achieving adipose tissue-specific gene ablations relative to traditional gene knockout approaches.
210

Role of Supervillin, a Membrane Raft Protein, in Cytoskeletal Organization and Invadopodia Function

Crowley, Jessica Lynn 12 February 2009 (has links)
Crucial to a cell’s ability to migrate is the organization of its plasma membrane and associated proteins in a polarized manner to interact with and respond to its surrounding environment. Cells interact with the extracellular matrix (ECM) through specialized contact sites, including podosomes and invadopodia. Tumor cells use F-actin-rich invadopodia to degrade ECM and invade tissues; related structures, termed podosomes, are sites of dynamic ECM interaction and degradation. We show here that supervillin (SV), a peripheral membrane protein that binds F-actin and myosin II,reorganizes the actin cytoskeleton and potentiates invadopodial function. Overexpressed SV increases the number of F-actin punctae, which are highly dynamic and co-localize with markers of podosomes and invadopodia. Endogenous SV localizes to the cores of Src-generated podosomes in COS-7 cells and with invadopodia in MDA-MB-231 cells. EGFP-SV overexpression increases the average amount of matrix degradation; RNAi-mediated downregulation of SV decreases degradation. Cortactin, an essential component of both podosomes and invadopodia, binds SV sequences in vitro and contributes to the formation of EGFP-SV induced punctae. Additionally, SV affects cortactin localization,which could provide a mechanism for SV action at invadopodia. The formation of cholesterol-rich membrane rafts is one method of plasma membrane organization. A property of membrane rafts is resistance to extraction with cold Triton X-100 and subsequent flotation to low buoyant densities. The actin cytoskeleton has been implicated in many signaling events localized to membrane rafts, but interactions between actin and raft components are not well characterized. Our laboratory isolated a heavy detergent resistant membrane fraction from neutrophils, called DRM-H, that contains at least 23 plasma membrane proteins. DRM-H is rich in cytoskeletal proteins, including fodrin, actin, myosin II, as well as supervillin. DRM-H also contains proteins implicated in both raft organization and membrane-mediated signaling. DRM-H complexes exhibit a higher buoyant density than do most DRMs (referred to as DRM-L), which are deficient in cytoskeletal proteins. By using similar purification methods, I find that COS-7 cells also contain cytoskeleton-associated DRMs. In addition, when transfected into COS-7 cells, estrogen receptor (ER)α associates with DRM-H, while ERβ is seen in both DRM-L and DRM-H populations, suggesting a role for DRM-H in nongenomic estrogen signaling. Thus, the cytoskeleton-associated DRM-H not limited to hematopoietic cells and could constitute a scaffold for membrane raftcytoskeleton signaling events in many cells. Taken together, our results show that SV is a component of cytoskeleton-associated membrane rafts as well as podosomes and invadopodia, and that SV plays a role in invadopodial function. SV, with its connections to both membrane rafts and the cytoskeleton, is well situated to mediate cortactin localization, activation state, and/or dynamics of matrix metalloproteases at the ventral cell surface for proper matrix degradation through invadopodia. The molecular dissection of invadopodia formation and function may contribute to a greater understanding of in vivo invasion, and thus, tumor cell metastasis.

Page generated in 0.0432 seconds