• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 3
  • Tagged with
  • 7
  • 7
  • 7
  • 5
  • 5
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Investigating Brain Structure Using Voxel-Based Methods with Magnetic Resonance Imaging

Streitbürger, Daniel-Paolo 28 January 2014 (has links) (PDF)
The number of people suffering from neurodegenerative diseases, such as Alzheimer`s disease, increased dramatically over the past centuries and is expected to increase even further within the next years. Based on predictions of the World Health Organization and Alzheimer`s Disease International, 115 million people will suffer from dementia by the year 2050. An additionally increase in other age related neurodegenerative diseases is also forecasted. Quite naturally, neurodegenerative diseases became a focus of attention of governments and health insurances, trying to control the uprising financial burden. Early detection and treatment of neurodegenerative diseases could be an important component in containing this problem. In particular, researchers focused on automatic methods to analyze patients’ imaging data. One way to detect structural changes in magnetic resonance images (MRI) is the voxel-based method approach. It was specifically implemented for various imaging modalities, e.g. T1-weighted images or diffusion tensor imaging (DTI). Voxel-based morphometry (VBM), a method specifically designed to analyze T1-weighted images, has become very popular over the last decade. Investigations using VBM revealed numerous structural brain changes related to, e.g. neurodegeneration, learning induced structural changes or aging. Although voxel-based methods are designed to be robust and reliable structural change detection methods, it is known that they can be influenced by physical and physiological factors. Dehydration, for example, can affect the volume of brain structures and possibly induce a confound in morphometric studies. Therefore, three-dimensional T1-weighted images were acquired of six young and healthy subjects during different states of hydration. Measurements during normal hydration, hyperhydration, and dehydration made it possible to assess consequential volume changes in gray matter (GM), white matter (WM), and cerebrospinal fluid (CSF). The datasets were analyzed using VBM, FreeSurfer and SIENA. A significant decrease of GM and WM volume, associated with dehydration, was found in various brain regions. The most prominent effects were found in temporal and parietal areas, in the left inferior orbito-frontal region, and in the extra-nuclear region. Moreover, we found consistent increases in CSF, an expansion around 6% of the ventricular system affecting both lateral ventricles, i.e. the third and fourth ventricle. Similar degrees of shrinkage in WM volume and increase of the ventricular system have been reported in studies of Alzheimer’s disease during disease progression and in its prestage mild cognitive impairment. Based on these findings, a potential confound in GM and WM or CSF studies due to the subjects’ hydration state cannot be excluded and should be appropriately addressed. These results underline the sensitivity of VBM and might also concern other voxel-based methods, such as Tract-Based Spatial Statistics (TBSS). TBSS was specifically designed for WM analyses and its sensitivity might be helpful for revealing the spatial relation of structural WM changes and related blood serum biomarkers. Two common brain related biomarkers are the glial protein S100B, a plasticity inducing neuro- and gliotrophin, and neuron-specific enolase (NSE), a marker for neuronal damage. However, the spatial specificity of these biomarkers for brain region has not been investigated in vivo until now. Therefore, we acquired two MRI parameters – T1- weighted and DTI - sensitive to changes in GM and WM, and obtained serum S100B and NSE levels of 41 healthy subjects. Additionally, the gene expression of S100B on the whole brain level in a male cohort of three subjects from the Allen Brain Database was analyzed. Furthermore, a female post mortal brain was investigated using double immunofluorescence labeling with oligodendrocyte markers. It could be shown that S100B is specifically related to white matter structures, namely the corpus callosum, anterior forceps and superior longitudinal fasciculus in female subjects. This effect was observed in fractional anisotropy and radial diffusivity – the latest an indicator of myelin changes. Histological data confirmed a co-localization of S100B with oligodendrocyte markers in the human corpus callosum. S100B was most abundantly expressed in the corpus callosum according to the whole genome Allen Human Brain Atlas. In addition, NSE was related to gray matter structures, namely the amygdala. This effect was detected across sexes. The data demonstrates a very high S100B expression in white matter tracts, in particular in human corpus callosum. This was the first in vivo study validating the specificity of the glial marker S100B for the human brain, and supporting the assumption that radial diffusivity represents a myelin marker. The results open a new perspective for future studies investigating major neuropsychiatric disorders. All above mentioned studies are mainly dependent on the sensitivity and accuracy of soft and hardware parameters. In particular, technical developments have improved acquisition accuracy in the field of MRI. Interestingly, very little is known about the confounding effects of variations due to hardware parameters and their possible impact on reliability and sensitivity of VBM. Recent studies have shown that different acquisition parameters may influence VBM results. Therefore age-related GM changes were investigated with VBM in 36 healthy volunteers grouped into 12 young, 12 middle-aged and 12 elderly subject. Six T1-weighted datasets were acquired per subject with a 12-channel matrix coil, as well as a 32-channel array, MP-RAGE and MP2RAGE, and with isotropic resolutions of 0.8 and 1 mm. DARTEL-VBM was applied on all images and GM, WM and CSF segments were statistically analyzed.. Paired t-tests and statistical interaction tests revealed significant effects of acquisition parameters on the estimated gray-matter-density (GMD) in various cortical and subcortical brain regions. MP2RAGE seemed slightly less prone to false positive results when comparing data acquired with different RF coils and yielded superior segmentation of deep GM structures. With the 12-channel coil, MP-RAGE was superior in detecting age-related changes, especially in cortical structures. Most differences between both sequences became insignificant with the 32-channel coil, indicating that the MP2RAGE images benefited more from the improved signal-to-noise ratio and improved parallel-imaging reconstruction). A possible explanation might be an overestimation of the GM compartment on the MP-RAGE images. In view of substantial effects obtained for all parameters, careful standardization of the acquisition protocol is advocated. While the current investigation focused on aging effects, similar results are expected for other VBM studies, like on plasticity or neurodegenerative diseases. This work has shown that voxel-based methods are sensitive to subtle structural brain changes, independent of imaging modality and scanning parameters. In particular, the studies investigated and discussed the analysis of T1- and diffusion weighted images with VBM and TBSS in the context of dehydration, blood serum sensitive biomarkers and aging were discussed. The major goal of these studies was the investigation of the sensitivity of voxel-based methods. In conclusion, sensitivity and accuracy of voxelbased methods is already high, but it can be increased significantly, using optimal hardand software parameters. It is of note, though, that these optimizations and the concomitant increase of detection sensitivity could also introduce additional confounding factors in the imaging data and interfere with the latter preprocessing and statistical computations. To avoid an interference e.g. originating from physiological parameters, a very careful selection and monitoring of biological parameters of each volunteer throughout the whole study is recommended. A potential impact of scanning parameters can be minimized by strict adherence to the imaging protocol for each study subjectwithin a study. A general increase in detection sensitivity due to optimized parameters selection in hard- and/or can not be concluded by the above mentioned studies. Although the present work addressed some of those issues, the topic of optimal selection of parameters for morphometric studies is still very complex and controversial and has to be individually decided. Further investigations are needed to define more general scanning and preprocessing standards to increase detection sensitivity without the concomitant amplification of confounding factors.
2

Mild Traumatic Brain Injury : Studies on outcome and prognostic factors

Lannsjö, Marianne January 2012 (has links)
Objectives: To explore the prevalence and structure of self-reported disability after mild traumatic brain injury and the impact of traumatic brain pathology on such outcome. Material and methods: In study 1-3, symptoms data were collected by use of Rivermead Post-concussion Symptoms Questionnaire (RPQ) and data on global function by use of Glasgow Outcome Scale Extended (GOSE) from 2602 patients at 3 months after MTBI. RPQ data were subject to factor and Rasch-analyses Head CT data from 1262 patients were used in a prediction analysis that also included age and gender. In study 4, MRI and symptoms data were collected at 2-3 days and at 3-7 months follow-up after MTBI in 19 patients. Global function was assessed at follow-up by use of the Rivermead Head Injury Follow-Up Questionnaire (RHIFUQ) and GOSE. Results: I. Most respondents reported no remaining symptoms but 24% reported ≥3 and 10% ≥7 remaining symptoms. The factor analysis demonstrated that all symptoms are correlated but also identified subgroups of symptoms. II. Rasch-analysis of RPQ showed disordered category function, local dependency of items, poor targeting of persons to items and indications of 3 or more dimensions. There was no differential item functioning. III. Head CT pathology with no need for acute intervention was observed in 52 patients (4%) but was not associated with either frequency of remaining symptoms or global outcome at 3 months post injury. Female gender and age over 30 years were associated with less favourable outcome with respect to symptoms and GOSE. IV. Post-acute MRI indicated trauma-related pathology in one patient and follow-up MRI indicated loss of brain volume in 4 patients. Conclusions: A substantial proportion of patients with MTBI report remaining problems at three months after MTBI. RPQ is useful but not optimal to assess symptoms outcome after MTBI and calculation of a total sum score is not recommended. Female gender and older age are negative prognostic factors while brain pathology according to CT has no effect on self-reported outcome. Loss of brain volume after MTBI according to MRI may be a sensitive marker of traumatic brain pathology and deserves further studies.
3

Kernspintomographische Untersuchungen nach "Controlled Cortical Impact Injury"

Stroop, Ralf 22 September 2003 (has links)
Fragestellung: Das von Dixon 1991 beschriebene tierexperimentelle Modell der 'controlled cortical impact injury'(CCII) wurde zur Untersuchung pathophysiologischer und pathomorphologischer Veränderungen nach traumatischer Hirnkontusion angewandt. Magnetresonanztomographische Techniken (MRT) einschließlich der diffusionswichtenden Bildgebung (DWI) wurden genutzt, um den Zeitverlauf der Hirnödementwicklung zu erfassen, eine Differenzierung unterschiedlicher Ödemformen zu ermöglichen und einen Blut-Hirn-Schrankenschaden zu detektieren. Desweiteren wurde die MRT genutzt, um den neuroprotektiven Effekt des NO-Synthase-Pathway-Modulators Lubeluzol, der bereits im Modell der zerebralen Ischämie nachgewiesen werden konnte, zu untersuchen. Material und Methoden: An 46 Sprague Dawley Ratten wurde eine links parieto-temporale Kontusion appliziert. Die Tiere wurden bis zu 7 Tage nach Trauma magnetresonanztomographisch untersucht. 36 Tiere erhielten Lubeluzol resp. Plazebo. Ergebnisse: Die T2-gewichtete Bildgebung zeigte eine maximale Ödemausbreitung 24 - 48 Stunden nach Trauma. Es ließ sich mithilfe der DWI ein Kontusionskern von einem Kontusionsrand differenzieren. Der Kontusionskern zeichnete sich bis 48 Stunden nach Trauma durch eine Abfall des apparenten Diffusionskoeffizienten (ADC) aus, einem zytotoxischem Ödem entsprechend, der Kontusionsrand wies während des gesamten Untersuchungszeitraums einen ADC-Anstieg auf, als Ausdruck eines vasogenen Ödems. Die T1-gewichtete Bildgebung konnte nach Kontrastmittel (KM)-Applikation durch die KM-Extravasation eine über 7 Tage anhaltende Störung der Blut-Hirnschranke detektieren. In der Lubeluzol-Studie ließ sich anhand der ADC-Veränderungen, des Ödemausmasses oder physiologischer Parameter wie Blutdruck, intrakranieller Druck oder Hirnschwellung kein signifikanter Unterschied zwischen den Tieren der Substanz- bzw. Plazebo-Gruppe aufzeigen. Schlußfolgerung: Die in dem Modell der CCII induzierte traumatische Hirnkontusion zeichnet sich bis 48 Stunden nach Trauma durch einen zytotoxischen Kontusionskern und einen diesen umgebenen vasogenen Kontusionrand aus. Desweiteren konnte ein anhaltender Blut-Hirnschrankendefekt nachgewiesen werden. Ein neuroprotektiver Effekt des Lubeluzols konnte in diesem Traumamodell in der hier applizierten Dosierung nicht nachgewiesen werden. / Objective: The controlled cortical impact injury (CCII) device, as described by Dixon 1991, was used to investigate the brain tissue damage in an animal model of severe traumatic brain injury. Magnetic resonance imaging (MRI) techniques including diffusion weighted imaging (DWI) have been applied to analyse the time course and the characteristics of edema formation and to detect blood-brain-barrier disruption. Furthermore MRI has been used to investigate a neuroprotective effect of the NO-synthase pathway modulator lubeluzole, which has proved markedly beneficial in a model of cerebral ischemia in rats. Material and Methods: a left parieto-temporal cortical contusion was inflicted upon 46 Sprague Dawley rats. Animals have been examined up to 7 days following trauma by MRI. 36 animals have been administered lubeluzole resp. placebo. Results: The most pronounced edema formation has been shown in T2-weighed imaging at 24 - 48 hours post trauma. DWI was able to distinguish between a contusion core and a contusion rim. The contusion core was marked by a decrease in the apparent diffusion coefficient (ADC) up to 48 hours post trauma, indicating cytotoxic edema, whereas the contusion rim has been characterised by vasogenic edema, as indicated by ADC-increase over the entire investigation period. In T1-weighted imaging contrast agent extravasation indicated a sustained blood brain barrier disruption up to 7 days after trauma. Compared to placebo administered rats in lubeluzole-treated animals no significant differences in ADC-changes, edema-extension or physiological parameters as blood pressure, intracranial pressure or brain swelling could be demonstrated. Conclusion: CCII induced traumatic brain injury is characterised by a cytotoxic edema up to 48 hours encircled by a vasogenic contusion rim accompanied by a sustained blood brain barrier disruption. In the model of CCII lubeluzole did not reveal a neuroprotective effect in the applied dosage.
4

Investigating Brain Structure Using Voxel-Based Methods with Magnetic Resonance Imaging

Streitbürger, Daniel-Paolo 16 January 2014 (has links)
The number of people suffering from neurodegenerative diseases, such as Alzheimer`s disease, increased dramatically over the past centuries and is expected to increase even further within the next years. Based on predictions of the World Health Organization and Alzheimer`s Disease International, 115 million people will suffer from dementia by the year 2050. An additionally increase in other age related neurodegenerative diseases is also forecasted. Quite naturally, neurodegenerative diseases became a focus of attention of governments and health insurances, trying to control the uprising financial burden. Early detection and treatment of neurodegenerative diseases could be an important component in containing this problem. In particular, researchers focused on automatic methods to analyze patients’ imaging data. One way to detect structural changes in magnetic resonance images (MRI) is the voxel-based method approach. It was specifically implemented for various imaging modalities, e.g. T1-weighted images or diffusion tensor imaging (DTI). Voxel-based morphometry (VBM), a method specifically designed to analyze T1-weighted images, has become very popular over the last decade. Investigations using VBM revealed numerous structural brain changes related to, e.g. neurodegeneration, learning induced structural changes or aging. Although voxel-based methods are designed to be robust and reliable structural change detection methods, it is known that they can be influenced by physical and physiological factors. Dehydration, for example, can affect the volume of brain structures and possibly induce a confound in morphometric studies. Therefore, three-dimensional T1-weighted images were acquired of six young and healthy subjects during different states of hydration. Measurements during normal hydration, hyperhydration, and dehydration made it possible to assess consequential volume changes in gray matter (GM), white matter (WM), and cerebrospinal fluid (CSF). The datasets were analyzed using VBM, FreeSurfer and SIENA. A significant decrease of GM and WM volume, associated with dehydration, was found in various brain regions. The most prominent effects were found in temporal and parietal areas, in the left inferior orbito-frontal region, and in the extra-nuclear region. Moreover, we found consistent increases in CSF, an expansion around 6% of the ventricular system affecting both lateral ventricles, i.e. the third and fourth ventricle. Similar degrees of shrinkage in WM volume and increase of the ventricular system have been reported in studies of Alzheimer’s disease during disease progression and in its prestage mild cognitive impairment. Based on these findings, a potential confound in GM and WM or CSF studies due to the subjects’ hydration state cannot be excluded and should be appropriately addressed. These results underline the sensitivity of VBM and might also concern other voxel-based methods, such as Tract-Based Spatial Statistics (TBSS). TBSS was specifically designed for WM analyses and its sensitivity might be helpful for revealing the spatial relation of structural WM changes and related blood serum biomarkers. Two common brain related biomarkers are the glial protein S100B, a plasticity inducing neuro- and gliotrophin, and neuron-specific enolase (NSE), a marker for neuronal damage. However, the spatial specificity of these biomarkers for brain region has not been investigated in vivo until now. Therefore, we acquired two MRI parameters – T1- weighted and DTI - sensitive to changes in GM and WM, and obtained serum S100B and NSE levels of 41 healthy subjects. Additionally, the gene expression of S100B on the whole brain level in a male cohort of three subjects from the Allen Brain Database was analyzed. Furthermore, a female post mortal brain was investigated using double immunofluorescence labeling with oligodendrocyte markers. It could be shown that S100B is specifically related to white matter structures, namely the corpus callosum, anterior forceps and superior longitudinal fasciculus in female subjects. This effect was observed in fractional anisotropy and radial diffusivity – the latest an indicator of myelin changes. Histological data confirmed a co-localization of S100B with oligodendrocyte markers in the human corpus callosum. S100B was most abundantly expressed in the corpus callosum according to the whole genome Allen Human Brain Atlas. In addition, NSE was related to gray matter structures, namely the amygdala. This effect was detected across sexes. The data demonstrates a very high S100B expression in white matter tracts, in particular in human corpus callosum. This was the first in vivo study validating the specificity of the glial marker S100B for the human brain, and supporting the assumption that radial diffusivity represents a myelin marker. The results open a new perspective for future studies investigating major neuropsychiatric disorders. All above mentioned studies are mainly dependent on the sensitivity and accuracy of soft and hardware parameters. In particular, technical developments have improved acquisition accuracy in the field of MRI. Interestingly, very little is known about the confounding effects of variations due to hardware parameters and their possible impact on reliability and sensitivity of VBM. Recent studies have shown that different acquisition parameters may influence VBM results. Therefore age-related GM changes were investigated with VBM in 36 healthy volunteers grouped into 12 young, 12 middle-aged and 12 elderly subject. Six T1-weighted datasets were acquired per subject with a 12-channel matrix coil, as well as a 32-channel array, MP-RAGE and MP2RAGE, and with isotropic resolutions of 0.8 and 1 mm. DARTEL-VBM was applied on all images and GM, WM and CSF segments were statistically analyzed.. Paired t-tests and statistical interaction tests revealed significant effects of acquisition parameters on the estimated gray-matter-density (GMD) in various cortical and subcortical brain regions. MP2RAGE seemed slightly less prone to false positive results when comparing data acquired with different RF coils and yielded superior segmentation of deep GM structures. With the 12-channel coil, MP-RAGE was superior in detecting age-related changes, especially in cortical structures. Most differences between both sequences became insignificant with the 32-channel coil, indicating that the MP2RAGE images benefited more from the improved signal-to-noise ratio and improved parallel-imaging reconstruction). A possible explanation might be an overestimation of the GM compartment on the MP-RAGE images. In view of substantial effects obtained for all parameters, careful standardization of the acquisition protocol is advocated. While the current investigation focused on aging effects, similar results are expected for other VBM studies, like on plasticity or neurodegenerative diseases. This work has shown that voxel-based methods are sensitive to subtle structural brain changes, independent of imaging modality and scanning parameters. In particular, the studies investigated and discussed the analysis of T1- and diffusion weighted images with VBM and TBSS in the context of dehydration, blood serum sensitive biomarkers and aging were discussed. The major goal of these studies was the investigation of the sensitivity of voxel-based methods. In conclusion, sensitivity and accuracy of voxelbased methods is already high, but it can be increased significantly, using optimal hardand software parameters. It is of note, though, that these optimizations and the concomitant increase of detection sensitivity could also introduce additional confounding factors in the imaging data and interfere with the latter preprocessing and statistical computations. To avoid an interference e.g. originating from physiological parameters, a very careful selection and monitoring of biological parameters of each volunteer throughout the whole study is recommended. A potential impact of scanning parameters can be minimized by strict adherence to the imaging protocol for each study subjectwithin a study. A general increase in detection sensitivity due to optimized parameters selection in hard- and/or can not be concluded by the above mentioned studies. Although the present work addressed some of those issues, the topic of optimal selection of parameters for morphometric studies is still very complex and controversial and has to be individually decided. Further investigations are needed to define more general scanning and preprocessing standards to increase detection sensitivity without the concomitant amplification of confounding factors.
5

QUANTIFICATION OF CARDIOVASCULAR DISEASE PROGRESSION THROUGH NON-INVASIVE IMAGING

Sydney Quinn Clark (15355594) 27 April 2023 (has links)
<p>  </p> <p>Cardiovascular disease has been the leading cause of death in the United States for over 70 years. To evaluate the extent and progression of cardiovascular disease, non-invasive imaging techniques are frequently used clinically and pre-clinically. Current echocardiographic and cine magnetic resonance approaches rely on measurements that are typically obtained from two-dimensional images, which assumes uniformity of the structure being evaluated. To explore methods to potentially address these shortcomings, our group has developed and validated high frequency four-dimensional ultrasound techniques as well as created a software toolbox that allows for measurement of myocardial kinematics. In this thesis, I assisted in the application of these methods to two murine models of disease states: myocardial infarction and aortic aneurysm. Another study I aided in focused on cardiac magnetic resonance imaging data from patients with Duchenne muscular dystrophy. From our software, we are able to obtain various strain and strain rate estimates that reveal significant functional changes in infarction and Duchenne muscular dystrophy earlier than standard measurement techniques. Furthermore, we are able to identify vascular expansion, transmural thickening, and changes in hemodynamics prior to aneurysm development. Earlier detection and localization allows for more targeted surveillance and interventions, which ultimately may result in improved clinical outcomes. Ideally, these findings can be used to expand the capabilities of cardiac research and the development of clinically applicable imaging techniques and treatments to better address underlying cardiovascular pathophysiology. </p>
6

Differenzierung von Hirntumoren mittels dynamischer Magnetresonanztomographie

Grieger, Wolfgünter Helwig 06 October 2005 (has links)
Die hier verwendete Methode der dynamischen Magnetresonanztomographie (dMRT) erlaubte bei Hirntumorpatienten erstmals, gleichzeitig neben dem regionalen zerebralen Blutvolumen (rCBV) und dem regionalen zerebralen Blutfluß weitere Parameter, wie Permeabilitäten, die interstitiellen Volumina und das Zellvolumen, zu bestimmen. Anhand dieser Parameter sollte erstens geprüft werden, inwieweit diese zu einer besseren Malignitätseinstufung von Hirntumoren beitragen. Zweitens sollte geklärt werden, inwiefern sich die untersuchten Tumorgruppen voneinander unterscheiden lassen. Drittens war es Ziel, ein in-vivo-Grading für die Gliome zu entwickeln. Es wurden 60 Patienten mit verschiedenen Tumoren, wie Gliome, Metastasen, Meningeome und Lymphome, untersucht. Die aus der dMRT-Untersuchung erhaltenen Daten wurden mit einem pharmakokinetischen Modell ausgewertet. Für jeden Patienten wurden die oben genannten Parameter in Form von Bildern dargestellt und quantitativ berechnet. Für die Tumordifferenzierung eignete sich das mittlere rCBV am besten: Innerhalb der Gliome konnte signifikant zwischen den Grad-II- und Grad-III-Gliomen und den Grad-II- und Grad-IV-Gliomen unterschieden werden. Weiterhin konnten die Meningeome signifikant von den anderen untersuchten Tumorentitäten abgegerenzt werden. Das in-vivo-Grading der Gliome erlaubte in 71 % der Fälle eine korrekte Zuordnung zum WHO-Grad. Die Parameterbilder lieferten neben Informationen für die Tumordifferenzierung auch beispielsweise Hinweise auf den heterogenen Tumoraufbau. Des weiteren ermöglichten sie, Narbengewebe gegenüber Tumorgewebe abzugrenzen und Folgen einer Strahlentherapie zu beobachten. Schließlich waren Aussagen über die Gefäßarchitektur und das Wachstum unterschiedlicher Tumorgruppen möglich. Die mit der hier verwendeten Methode der dMRT erhaltenen Parameter boten mehrere Vorteile: Eine Differenzierung einzelner Tumorgruppen war möglich. Für die Gliome konnte mittels des in-vivo-Gradings eine quantitative Malignitätseinschätzung erfolgen. Die gewonnenen Informationen über den heterogenen Tumoraufbau erlauben bessere Biopsieergebnisse. Zusätzlich wurden Hinweise auf die Tumorpathophysiologie erhalten und es erschien möglich Veränderungen nach Therapie zu beobachten. / A method of dynamic magnet resonance imaging (dMRI) was used, which allowed for the first time to determine simultaneously several parameters in patients with brain tumors. These parameters were the regional cerebral blood volume (rCBV), the regional cerebral blood flow, and in addition, permeabilities, interstitial volumes, and the cell volume. First, it should be determined to what extent these parameters allow a better classification of the malignancy of brain tumors. Second, it should be evaluated how far it is possible to differentiate the examined tumor groups from each other. Third, a method for an in-vivo-grading specifically for gliomas should be developed. Altogether 60 patients with different tumors such as gliomas, metastasis, meningiomas, and lymphomas were examined. The data of the dMRI examination were evaluated using a pharmacokinetic model. For every patient, the parameters mentioned above were shown in maps and calculated quantitatively. The mean rCBV resulted in the best tumor differentiation: within the group of gliomas it was possible to differentiate significantly between grade-II- and grade-III-gliomas and grade-II- and grade-IV-gliomas. Furthermore, meningiomas were differentiated significantly from the other tumors. In respect to the group of gliomas, the tumor grades determined by the developed in-vivo-grading corresponded with the WHO grade of each glioma in 71 % of the cases. The parameter maps were not only usefull for tumor differentiation, but also yielded information concerning the heterogenous tumor structure. Additionally, these maps allowed to differentiate scar tissue from tumor tissue and effects of a radiotherapy could be observed. Finally, information about the vessel architecture and the growth of different tumor groups could be obtained. The parameters determined by the dMRI method used here offered several advantages: it was possible to differentiate between single tumor groups. For the gliomas, a quantitative malignancy classification resulted from the in-vivo-grading. The information concerning the structure of the heterogeneity of the tumor allows for better biopsy results. Additionally, information was also obtained concerning the pathophysiology of the tumors and it seemed possible to observe changes after a therapy.
7

Diagnostik und Evaluation der Entzündungsschwere chronisch entzündlicher Darmerkrankungen durch Magnetresonanztomographie

Herrler, Jörn Heinrich 05 March 2004 (has links)
Für die Therapie chronisch entzündlicher Darmerkrankungen (CED) ist die Diagnostik befallener Darmabschnitte und enteraler Komplikationen ebenso von Bedeutung, wie die Einschätzung der klinischen und endoskopischen Entzündungsaktivität. In einer Studie soll die Wertigkeit der Magnetresonanztomographie (MRT) untersucht werden, die Entzündungsaktivität CED anhand visueller Befunde und Komplikationen einzuschätzen. Außerdem soll überprüft werden, ob auf eine Kontrastierung des Darmes zugunsten eines höheren Patientenkomforts und einer schnelleren Untersuchung verzichtet werden kann. 64 Patienten mit bekannter oder vermuteter CED wurden vor und nach intravenöser Gd-DTPA-Injektion mit dem MR-Tomographen untersucht. Während 35 Patienten eine orale und rektale Kontrastierung mit Endoskopielösung erhielten, wurden 31 nicht enteral kontrastiert. 53 der untersuchten Patienten wurden zeitnah koloskopiert. Ein neu entwickelter MR-Aktivitätsindex (MRAI), die Kontrastmittelanreicherung in der Darmwand sowie die gemessenen Darmwanddicken wurden mit klinischen Indizes (CAI, CDAI) und dem Endoskopie-Aktivitätsindex (EAI) korreliert. Weiterhin wurden koronare Bilder aller Patienten bezüglich der Distension des Darmes und der Abgrenzbarkeit der Darmwand begutachtet. Im Vergleich mit dem EAI konnten signifikante Unterschiede für die Verteilung des Darmwand-Enhancements und der gemessenen Darmdicken nachgewiesen werden. Der MRAI zeigte eine Korrelation von Eta = 0,43 mit der klinischen Aktivität. Für Colitis ulcerosa-Patienten konnte ein Eta = 0,64 erstellt werden. Untersuchte, die eine Kontrastierung des Darmes erhielten, wiesen eine exzellente Korrelation (Eta = 0,76) zwischen MRAI und CAI / CDAI auf, während dieser Zusammenhang für Patienten ohne enterale Auffüllung fehlte. Weiterhin konnten signifikante Zusammenhänge zwischen enteraler Kontrastierung und der Distension des Darmes sowie der Abgrenzbarkeit der Darmwand gezeigt werden. Die Arbeit macht deutlich, daß es möglich ist, CED mittels MRT zuverlässig zu diagnostizieren und mit Hilfe des MRAI in ihrer klinischen und endoskopischen Entzündungsaktivität einzuschätzen. Dabei sollte auf die Anwendung eines enteralen Kontrastmittels nicht verzichtet werden. Ein Einsatz der MRT ist somit nicht nur bei der Diagnostik sondern auch zur Verlaufskontrolle der CED sinnvoll. / For the therapy of Inflammatory Bowel Diseases (IBD), not only the diagnosis of affected bowel segments and enteral complications but also the assessment of the clinical and endoscopic activity is important. The value of Magnetic Resonance Imaging (MRI) to asses the activity of IBD by visual findings and complications shall be determined by a clinical study. Furthermore shall be tested how the application of enteral contrast media affects patient comfort and examination time. 64 patients with known or supposed IBD were examined by MRI before and after intravenous injection of Gd-DTPA. 35 patients received oral and rectal contrast medium (2,5% mannitol solution) while 31 patients remaining without enteral replenishment. 53 patients underwent colonoscopy.A newly developed MR Activity Index (MRAI), based on visual findings, contrast-enhancement of the bowel wall and measured wall thickness were correlated with clinical (Crohn�s Disease Activity Index, CDAI; Colitis Activity Index, CAI) and endoscopic (Endoscopy Activity Index, EAI) activity. Coronal images of all patients were evaluated referring to bowel distension and demarcation of the bowel wall. The comparision with EAI shows significant differences in the distribution for wall contrast-enhancement and wall thickness. A good correlation is determined between the MRAI and the clinical activity (Eta = 0,43). Considering only patients with Ulcerative Colitis the correlation between MRAI and CAI shows Eta = 0,64. An excellent correlation of Eta = 0,76 between MRAI and CDAI / CAI for all patients with oral and enteral replenishment was found, while there was no correlation in the group, which did not receive mannitol solution. Significant correlations were also seen between the enteral mannitol solution replenishment and bowel distension and demarcation of the bowel wall. MRI shows good accuracy in detecting the changes the of IBD. The new developed MRAI allows an assessment of the activity of IBD. The results demonstrate that oral and enteral contrast media should be applied for MR examination of the abdomen. The utilization of MRI is furthermore useful in the follow up of IBD.

Page generated in 0.0564 seconds