• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 3
  • 3
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Planar Hall Effect : Detection of Ultra Low Magnetic Fields and a Study of Stochasticity in Magnetization Reversal

Roy, Arnab January 2015 (has links) (PDF)
In the present thesis, we have explored multiple aspects concerning the stochasticity of magnetic domain wall motion during magnetization reversal, all of which originated from our initial study of magnetic field sensing using planar Hall effect. Magnetic field sensors occupy a very important and indispensable position in modern technology. They can be found everywhere, from cellphones to automobiles, electric motors to computer hard disks. At present there are several emerging areas of technology, including biotechnology, which require magnetic field sensors which are at the same time simple to use, highly sensitive, robust under environmental conditions and sufficiently low cost to be deployed on a large scale. Magnetic field sensing using planar Hall effect is one such feasible technology, which we have explored in the course of the thesis. The work was subsequently expanded to cover some fundamental aspects of the stochasticity of domain wall motion, studied with planar Hall effect, which forms the main body of work in the present study. In Chapter 1, we give an introduction to the phenomenology of planar Hall effect, which is the most important measurement technique used for all the subsequent studies. Some early calculations, which had first led to the understanding of anisotropic magnetoresistance and planar Hall effect as being caused by spin-orbit interaction are discussed. In Chapter 2, we discuss briefly the experimental techniques used in the present study for sample growth and fabrication, structural and magnetic characterization, and measurement. We discuss pulsed laser ablation, which is the main technique used for our sample growth. Particular emphasis is given to the instrumentation that was carried out in-house for MOKE and low field magnetotransport (AMR and PHE) measurement. This includes an attempt at domain wall imaging through MOKE microscopy. Some of the standard equipments used for this work, such as the SQUID magnetometer and the acsusceptometer are also discussed in detail. In Chapter 3 we discuss our work on planar Hall sensors that led to the fabrication of a device with a very simple architecture, having transfer characteristics of 650V/A.T in a range of _2Oe. The sensing material was permalloy (Ni81Fe19), and the value had been obtained without using an exchange biased pinning layer. Field trials showed that the devices were capable of geomagnetic field sensing, as well as vehicle detection by sensing the anomaly in Earth's magnetic field caused by their motion. Its estimated detection threshold of 2.5nT made it well suited for several other applications needing high sensitivity in a small area, the most prominent of them being the detection of macromolecules of bio-medical significance. Chapter 4: The work on Barkhausen noise was prompted by reproducibility problems faced during the sensor construction, both between devices as well as within the same device. Study of the stochastic properties led us to the conclusion that the devices could be grouped into two classes: one where the magnetization reversal occurred in a single step, and the other where it took a 0staircase0 like path with multiple steps. This led us to simulations of Barkhausen noise using nucleation models like the RFIM whence it became apparent that the two different groups of samples could be mapped into two regimes of the RFIM distinguished by their magnetization reversal mode. In the RFIM, the nature of the hysteresis loop depends on the degree of disorder, with a crossover happening from single-step switching to multi-step switching at a critical disorder level. Appropriate changes also appear in the Barkhausen noise statistics due to this disorder-induced crossover. By studying the Barkhausen noise statistics for our permalloy samples and comparing them with simulations of the RFIM, we found nearly exact correspondence between the two experimental groups with the two classes resulting from crossing the critical disorder. What remained was to quantify the 0disorder0 level of our samples, which was done through XRD, residual resistivity and a study of electron-electron interaction effects in the resistivity. All these studies led to the conclusion that the samples reversing in multiple steps were more 0defective0 than the other group, at par with the model predictions. This completed the picture with respect to the modeling of the noise. In experiments, it was found that a high rate of film deposition yielded less 0defective0 samples, which severed as an important input for the sensor construction. These results can be viewed from a somewhat broader perspective if we consider the present scenario in the experimental study of Barkhausen noise, or crackling noise in general. Two classes of models exist for such phenomena: front propagation models and nucleation models. Both appear to be very successful when it comes to experiments with bulk materials, while the comparison with experiments on thin films is rather disappointing. It is still not clear whether the models are at fault or the experiments themselves. Through our study, we could demonstrate that there can be considerable variation in the Barkhausen noise character of the same material deposited in the same way, and what was important was the degree of order at the microscopic level. This may be a relevant factor when experimental papers report non-universality of Barkhausen noise in thin films, which can now be interpreted as either insufficient defects or a sample area too small for the study. Chapter 5: Defects in a sample are not the only cause for stochastic behavior during magnetization. In most cases, random thermal 0events0 are also an important factor determining the path to magnetization reversal, which was also true for our permalloy samples. We studied the distribution of the external fields at which magnetization reversal took place in our samples, and tried to explain it in terms of the popular Neel-Brown model of thermal excitation over the anisotropy barrier. The analysis showed that even though the coercivity behaved 0correctly0 in terms of the model predictions, the behavior of the distribution width was anomalous. Such anomalies were common in the literature on switching field distributions, but there seemed to be no unified explanation, with different authors coming up with their own 0exotic0 explanations. We decided to investigate the simplest situations that could result in such a behavior, and through some model-based calculations, came to the conclusion that one of the causes of the anomalies could be the different magnitudes of barrier heights/anisotropy fields experienced by the magnetic domain wall when the reversal occurs along different paths. Though an exact match for the behavior of the distribution width could not be obtained, the extended Neel-Brown model was able to produce qualitative agreement. Chapter 6 contains a study of some interesting 0geometrical0 effects on Barkhausen noise of iron thin films. By rotating the applied magnetic field out-of plane, we could observe the same single-step to multi-step crossover in hysteresis loop nature that was brought about by varying disorder in Chapter 4. We could explain this through simulations of a random anisotropy Ising model, which, apart from exhibiting the usual disorder induced crossover, showed a transition from sub-critical to critical hysteresis loops when the external field direction was rotated away form the average anisotropy direction. Once again, simulation and experiment showed very good agreement in terms of the qualitative behavior. In the second part of this chapter, a study of exchange biased Fe-FeMn system was carried out, where it was observed that the reversal mode has been changed from domain wall motion to coherent rotation. Barkhausen noise was also suppressed. Though many single-domain models existed for this type of reversal, our system was not found to be strictly compatible with them. The disagreement was with regard to the nature of the hysteresis, which, if present, had to be a single step process for a single domain model. The disagreement was naturally attributed to interaction with the nearby magnetic moments, to verify which, simulations were done with a simplified micromagnetic code, which produced excellent agreement with experiment. In Chapter 7, we have studied the temporal properties of Barkhausen avalanches, to compare the duration distributions with simulation. We had used a permalloy sample that was sub-critical according to avalanche size distributions, and our measurement was based on magneto-optic Kerr effect. We measured duration distributions which showed a similar manifestation of finite-size effects as were shown by the size distributions. The power law exponent was calculated, which was deemed 0reasonable0 upon comparison simulations of the sub-critical RFIM. Appendix A contains a study of high-field magnetoresistance of permalloy, which shows that the dominant contribution to magnetoresistance is the suppression of electron-magnon scattering. An interesting correlation is observed between the magnetization of samples and an exchange stiffness parameter d1, that was extracted from magnetoresistance measurements. Here we also re-visit our earlier observation of permalloy thin films possessing a resistance minimum at low temperature. The origin of this minimum is attributed to electron-electron interaction. Appendix B contains the source codes for most of the important programs used for simulation and data analysis. The programs are written in MATLAB and FORTRAN 95. LabView programs used for data acquisition and analysis are not included due to space requirements to display their graphical source codes. Appendix C discusses the studies on a disordered rare-earth oxide LaMnO3. The re-entrant glassy phase is characterized with ac susceptibility and magnetization measurements to extract information about the nature of interactions between the magnetic 0macrospins0 in the system. Appendix D deals with electron scattering experiments performed with spinpolarized electrons (SPLEED) from clean metal surfaces in UHV. A study of the scattering cross sections as a function of energy and scattering angle provides information about spin-orbit and exchange interactions of the electrons with the surface atoms, and can answer important questions pertaining to the electronic and magnetic structure of surfaces. In the course of this study, planar Hall effect is seen to emerge as a powerful tool to study the magnetic state of a thin film, so that it is interesting to apply it to thin films of other materials such as oxides, where magnetization noise studies are next to nonexistent. What also emerged is that there is still a lot of richness present in the details of supposedly well-understood magnetization phenomena, some of which we have explored in this thesis in the context of stochastic magnetization processes.
2

Magnetic Field Sensing with Nitrogen-Vacancy Color Centers in Diamond

Pham, Linh My 07 December 2013 (has links)
In recent years, the nitrogen-vacancy (NV) center has emerged as a promising magnetic sensor capable of measuring magnetic fields with high sensitivity and spatial resolution under ambient conditions. This combination of characteristics allows NV magnetometers to probe magnetic structures and systems that were previously inaccessible with alternative magnetic sensing technologies. This dissertation presents and discusses a number of the initial efforts to demonstrate and improve NV magnetometry. In particular, a wide-field CCD based NV magnetic field imager capable of micron-scale spatial resolution is demonstrated; and magnetic field alignment, preferential NV orientation, and multipulse dynamical decoupling techniques are explored for enhancing magnetic sensitivity. The further application of dynamical decoupling control sequences as a spectral probe to extract information about the dynamics of the NV spin environment is also discussed; such information may be useful for determining optimal diamond sample parameters for different applications. Finally, several proposed and recently demonstrated applications which take advantage of NV magnetometers' sensitivity and spatial resolution at room temperature are presented, with particular focus on bio-magnetic field imaging. / Engineering and Applied Sciences
3

LIGHT-MATTER INTERACTION FROM ATOMISTIC RARE-EARTH CENTERS IN SOLIDS TO MASSIVE LEVITATED OBJECTS

Xiaodong Jiang (10524008) 19 April 2022 (has links)
<p>  </p> <p>A harmonic oscillator is a ubiquitous tool in various disciplines of engineering and physics for sensing and energy transduction. The degrees of freedom, low noise oscillation, and efficient input-output coupling are important metrics when designing sensors and transducers using such oscillators. The ultimate examples of such oscillators are quantum mechanical oscillators coherently transducing information or energy. Atoms are oscillators whose degrees of freedom can be controlled and probed coherently by means of light. Elegant techniques developed during the last few decades have enabled us to use atoms, for example, to build exquisite quantum sensors such as clocks with the precision of <1 second error over the lifetime of the universe, to store and transduce information of various forms and also to develop quantum processors. Similar to atoms, mechanical oscillators can also be controlled ultimately to their single vibrational quanta and be used for similar sensing and transduction applications.</p> <p><br></p> <p>In this thesis, we explore both atomic and mechanical systems and develop a toolbox to build an effective atom-light interface and light-oscillator interface for controlling such atomic and mechanical oscillators and use them in sensing and storage applications. Primarily, we study two disparate platforms: 1) rare-earth ions in solids integrated into photonic chips as a compact and heterogeneous platform and 2) nanoscopic and macroscopic oscillators interfaced with light and magnetic field to isolate them from environmental noise. </p> <p><br></p> <p>Rare earth (RE) ions in crystals have been identified as robust optical centers and promising candidates for quantum communication and transduction applications. Lithium niobate (LN), a novel crystalline host of RE ions, is considered as a viable material for photonic system integration because of its electro-optic and integration capability. This thesis first experimentally reports the activation and characterization of LN crystals implanted with Yb and Er ions and describes their scalable integration with a silicon photonic chip with waveguide and resonator structures. The evanescent coupling of light emitted from Er ions with optical modes of waveguide and microcavity and modified photoluminescence (PL) of Er ions from the integrated on-chip Er:LN-Si-SiN photonic device with quality factor of 104 have been observed at room temperature. This integrated platform can ultimately enable developing quantum memory and provide a path to integrate more photonic components on a single chip for applications in quantum communication and transduction.</p> <p><br></p> <p>Optomechanical systems are also considered as candidates for light storage and sensing. In this thesis, we also present results of the theoretical study of coherent light storage in an array of nanomechanical resonators. The majority of the thesis is focusing on an optomechanical sensing experiment based on levitation. An oscillator well isolated from environmental noise can be used to sense force, inertia, torque, and magnetic field with high sensitivity as the interaction with these quantities can change the amplitude or frequency of the oscillator’s vibration, which can be accurately measured by light. It has been proposed that such levitated macroscopic objects could be used as quantum sensors and transducers at their quantum ground states. They are also proposed as a platform to test fundamental physics such as detecting gravitational waves, observing macroscopic quantum entanglement, verifying the spontaneous collapse models, and searching for dark matter.</p> <p><br></p> <p>In particular, we consider superconducting levitation of macroscopic objects in vacuum whose positions are measured by light. We build an optomechanical platform based on a levitated small high reflective (HR)-coated mirror above a superconductor disk. We use this levitated mirror at ambient conditions to detect the magnetic field with a sensitivity on the order of <em>pT/sqrt(Hz).</em> Moreover, the levitated mirror is used as the end mirror of a Fabry–Pérot cavity to create an optical resonance that could be used to study coherent radiation pressure forces. The platform provides a sensitive tool to measure the various forces exerted on the mirror and it offers the possibility of the coherent optical trapping of macroscopic objects and precision gravity sensing. Moreover, we study the nonlinear dissipation and mode coupling of a levitated HR-coated magnetic mirror above a superconducting disk in vacuum conditions. We observe that by exciting one vibrational mode of the mirror, the vibrational noise of another mode can be significantly suppressed by a factor of 60. We attribute this unique noise suppression mechanism to the mode coupling and nonlinear dissipation caused by the driven magnetic inhomogeneity of the levitated object. Such a suppression mechanism can enable cooling certain modes independent of their detection and position in the spectrum, which may be promising for precision sensing applications.</p>

Page generated in 0.1147 seconds