Spelling suggestions: "subject:"magnetite"" "subject:"magnetites""
131 |
Growth and physical properties of magnetite thin filmsSiyambalapitiya, Chamila S 01 June 2006 (has links)
This project focused on two aspects of magnetite thin films. The first was to find optimum parameters and conditions for deposition of stoichiometeric Magnetite films using pulsed laser deposition (PLD). The second aspect was the characterization of the magnetic and electrical properties in order to broaden the spectrum of understanding of PLD Magnetite films. These properties were also investigated in terms of the substrates on which the films were deposited. Discussed in this thesis are deposition parameters, structural characteristics, magnetic and electrical characteristics of the films in terms of different substrates and film thicknesses. The discussion consists of structural parameters obtained using X- ray diffraction (XRD), Scanning electron microscopy (SEM), Energy dispersive spectroscopy (EDS), and electric properties such as resistance as a function of temperature and voltage dependence on the applied current. The magnetic properties measured were the magneto-resistance, M-H hysteresis loop, and magnetization as a function of temperature. The results obtained are then compared with pre-existing literature data. It will be shown that there is an impurity phase that may be seen when magnetite films are deposited on Sillicon dioxide substrates.
|
132 |
Electrochemical Deactivation of Nitrate, Arsenate, and TrichloroethyleneMishra, Dhananjay January 2006 (has links)
This research investigated the mechanism, kinetics and feasibility of nitrate, arsenate, and trichloroethylene inactivation on zerovalent iron (ZVI), mixed-valent iron oxides, and boron doped diamond film electrode surfaces, respectively. Nitrate ( ) is a common co-contaminant at sites remediated using permeable reactive barriers (PRBs). Therefore, understanding nitrate reactions with ZVI is important for understanding the performance of PRBs. This study investigated the reaction mechanisms of with ZVI under conditions relevant to groundwater treatment. Tafel analysis and electrochemical impedance spectroscopy were used to probe the surface reactions. Batch experiments were used to study the reaction rate of with freely corroding and cathodically protected iron wires. The removal kinetics for the air formed oxide (AFO) were 2.5 times slower than that of water formed oxide (WFO).This research also investigated the use of slowly corroding magnetite (Fe3O4) and wustite (FeO) as reactive adsorbent media for removing As(V) from potable water. Observed corrosion rates for mixed valent iron oxides were found to be 15 times slower than that of zerovalent iron under similar conditions. Electrochemical and batch and column experiments were performed to study the corrosion behavior and gain a deeper understanding on the effects of water chemistry and operating parameters, such as, empty bed contact times, influent arsenic concentrations, dissolved oxygen levels and solution pH values and other competing ions. Reaction products were analyzed by X-Ray diffraction and XPS to determine the fate of the arsenic.This research also investigated use of boron doped diamond film electrodes for reductive dechlorination of trichloroethylene (TCE). TCE reduction resulted in nearly stoichiometric production of acetate. Rates of TCE reduction were found to be independent of the electrode potential at potentials below -1 V with respect to the standard hydrogen electrode (SHE). However, at smaller overpotentials, rates of TCE reduction were dependent on the electrode potential. Short lived species analysis and density functional simulations indicate that TCE reduction may occur by formation of a surface complex between TCE and carbonyl groups present on the surface.
|
133 |
Distribution of incompatible trace elements in rock-forming and accessory minerals from carbonatites as a tracer of magma evolutionReguir, Ekaterina 22 August 2011 (has links)
Carbonatites are igneous rocks comprising more than 50 modal percent of carbonate minerals and characterized by highly variable modal compositions. The majority of carbonatites are confined to intra-continental rifts, whereas occurrences associated with plate margins and orogenic settings are less common. Petrogenesis of carbonatites has been a matter of intense debate for several decades. The possible genetic models include crystallisation from a primary carbonatite magma, liquid immiscibility and crystal fractionation from carbonate-rich silicate magma. In contrast to the voluminous bulk-rock trace-element data and major-element analyses of minerals from carbonatites available in the literature, there has been no systematic study concerned with the trace-element signatures of the most common constituents of these rocks.
This work is the first comprehensive study of the interrelations between the trace-element chemistry of the most common constituents of carbonatites, the geochemistry of these rocks, and their tectonic setting. The rock samples examined represent 21 different localities worldwide. The extent of major- and trace-element substitutions in amphibole, clinopyroxene, trioctahedral micas, dolomite, magnetite and perovskite is investigated in detail. The silicate minerals from carbonatites exhibit much larger compositional diversity than previously recognized. They can incorporate significant amounts of such petrogenetically important elements as Sr, REE, Zr, Nb and Ta. The majority of studied clino-amphibole- and clinopyroxene-group minerals exhibit previously unrecognized a bimodal distribution patterns of REE, which can be explained in terms of crystal chemistry of these phases. The trace-element signature of phlogopite from carbonatites, particularly Nb, Mn, Ni and Cr, is distinctly different from that of phlogopite from kimberlites, and can be used as a reliable petrogenetic indicator. Compositional variations in dolomite reflect magmatic and subsolidus processes in carbonatites. Magnetite from carbonatites follows a well-defined magmatic and previously unrecognized reaction trend. Contrary to prior studies, this mineral is only a minor host of HFSE in carbonatitic rocks. The U-Pb age data, trace-element and Sr-isotopic composition of perovskite from the Afrikanda carbonatite and clinopyroxenite suggest that the two rocks are not related by crystal fractionation. This study underlines the importance of a systematic approach in petrogenetic studies based on trace-element distribution.
|
134 |
ULTRA CLEAN COAL PRODUCTION USING DENSE MEDIUM SEPARATION FOR THE SILICON MARKETAmini, Seyed Hassan 01 January 2014 (has links)
The production of high quality silicon requires the use of ultraclean coal containing less than 1.5% ash. The magnetite used to clean the coal in a dense medium process is a contaminant that seriously impacts the quality of the final silicon product. As such, research has been conducted to evaluate the potential to substitute the magnetite with fine silica–based alternative material generated during the silicon production process. Dense medium cyclone tests were performed based on a statistically designed program to determine the optimum conditions that maximize organic efficiency and minimize probable error and low–density bypass. The results revealed that a clean coal product with less than 1.5% ash can be produced using a medium formed from the silicon production waste with an organic efficiency value of around 99% and a probable error value below 0.02. There was no measurable bypass of high density particles into the product stream or low–density particles into the reject stream.
|
135 |
Biological and biomimetic formation and organization of magnetic nanoparticlesFaivre, Damien January 2014 (has links)
Biological materials have ever been used by humans because of their remarkable properties. This is surprising since the materials are formed under physiological conditions and with commonplace constituents. Nature thus not only provides us with inspiration for designing new materials but also teaches us how to use soft molecules to tune interparticle and external forces to structure and assemble simple building blocks into functional entities. Magnetotactic bacteria and their chain of magnetosomes represent a striking example of such an accomplishment where a very simple living organism controls the properties of inorganics via organics at the nanometer-scale to form a single magnetic dipole that orients the cell in the Earth magnetic field lines.
My group has developed a biological and a bio-inspired research based on these bacteria. My research, at the interface between chemistry, materials science, physics, and biology focuses on how biological systems synthesize, organize and use minerals. We apply the design principles to sustainably form hierarchical materials with controlled properties that can be used e.g. as magnetically directed nanodevices towards applications in sensing, actuating, and transport.
In this thesis, I thus first present how magnetotactic bacteria intracellularly form magnetosomes and assemble them in chains. I developed an assay, where cells can be switched from magnetic to non-magnetic states. This enabled to study the dynamics of magnetosome and magnetosome chain formation. We found that the magnetosomes nucleate within minutes whereas chains assembles within hours. Magnetosome formation necessitates iron uptake as ferrous or ferric ions. The transport of the ions within the cell leads to the formation of a ferritin-like intermediate, which subsequently is transported and transformed within the magnetosome organelle in a ferrihydrite-like precursor. Finally, magnetite crystals nucleate and grow toward their mature dimension.
In addition, I show that the magnetosome assembly displays hierarchically ordered nano- and microstructures over several levels, enabling the coordinated alignment and motility of entire populations of cells. The magnetosomes are indeed composed of structurally pure magnetite. The organelles are partly composed of proteins, which role is crucial for the properties of the magnetosomes. As an example, we showed how the protein MmsF is involved in the control of magnetosome size and morphology. We have further shown by 2D X-ray diffraction that the magnetosome particles are aligned along the same direction in the magnetosome chain. We then show how magnetic properties of the nascent magnetosome influence the alignment of the particles, and how the proteins MamJ and MamK coordinate this assembly. We propose a theoretical approach, which suggests that biological forces are more important than physical ones for the chain formation. All these studies thus show how magnetosome formation and organization are under strict biological control, which is associated with unprecedented material properties. Finally, we show that the magnetosome chain enables the cells to find their preferred oxygen conditions if the magnetic field is present.
The synthetic part of this work shows how the understanding of the design principles of magnetosome formation enabled me to perform biomimetic synthesis of magnetite particles within the highly desired size range of 25 to 100 nm. Nucleation and growth of such particles are based on aggregation of iron colloids termed primary particles as imaged by cryo-high resolution TEM. I show how additives influence magnetite formation and properties. In particular, MamP, a so-called magnetochrome proteins involved in the magnetosome formation in vivo, enables the in vitro formation of magnetite nanoparticles exclusively from ferrous iron by controlling the redox state of the process. Negatively charged additives, such as MamJ, retard magnetite nucleation in vitro, probably by interacting with the iron ions. Other additives such as e.g. polyarginine can be used to control the colloidal stability of stable-single domain sized nanoparticles.
Finally, I show how we can “glue” magnetic nanoparticles to form propellers that can be actuated and swim with the help of external magnetic fields. We propose a simple theory to explain the observed movement. We can use the theoretical framework to design experimental conditions to sort out the propellers depending on their size and effectively confirm this prediction experimentally. Thereby, we could image propellers with size down to 290 nm in their longer dimension, much smaller than what perform so far. / Biologische Materialien wie Knochen, Muscheln und Holz wurden von den Menschen seit den ältesten Zeiten verwendet. Diese biologisch gebildeten Materialien haben bemerkenswerte Eigenschaften. Dies ist besonders überraschend, da sie unter physiologischen Bedingungen und mit alltäglichen Bestandteilen gebildet sind. Die Natur liefert uns also nicht nur mit Inspiration für die Entwicklung neuer Materialien, sondern lehrt uns auch, wie biologische Additiven benutzen werden können, um einfache synthetische Bausteine in funktionale Einheiten zu strukturieren.
Magnetotaktischen Bakterien und ihre Kette von Magnetosomen sind ein Beispiel, wo einfache Lebewesen die Eigenschaften von anorganischen Materialien steuern, um sich entlang den magnetischen Feldlinien der Erde zu orientieren. Die von den Bakterien gebildeten Magnetosomen sind von besonderem Interesse, da mit magnetischen Eisenoxid-Nanopartikeln in den letzten zehn Jahren einer Vielzahl von Bio-und nanotechnologischen Anwendungen entwickelt worden sind.
In dieser Arbeit stelle ich eine biologische und eine bio-inspirierte Forschung auf der Grundlage der magnetotaktischen Bakterien vor. Diese Forschung verbindet die neuesten Entwicklungen von Nanotechnik in der chemischen Wissenschaft, die neuesten Fortschritte der Molekularbiologie zusammen mit modernen Messverfahren. Mein Forschungsschwerpunkt liegt somit an der Schnittstelle zwischen Chemie, Materialwissenschaften, Physik und Biologie. Ich will verstehen, wie biologische Systeme Materialien synthetisieren und organisieren, um Design-Prinzipien zu extrahieren, damit hierarchischen Materialien mit kontrollierten Eigenschaften nachhaltig gebildet werden.
|
136 |
Distribution of incompatible trace elements in rock-forming and accessory minerals from carbonatites as a tracer of magma evolutionReguir, Ekaterina 22 August 2011 (has links)
Carbonatites are igneous rocks comprising more than 50 modal percent of carbonate minerals and characterized by highly variable modal compositions. The majority of carbonatites are confined to intra-continental rifts, whereas occurrences associated with plate margins and orogenic settings are less common. Petrogenesis of carbonatites has been a matter of intense debate for several decades. The possible genetic models include crystallisation from a primary carbonatite magma, liquid immiscibility and crystal fractionation from carbonate-rich silicate magma. In contrast to the voluminous bulk-rock trace-element data and major-element analyses of minerals from carbonatites available in the literature, there has been no systematic study concerned with the trace-element signatures of the most common constituents of these rocks.
This work is the first comprehensive study of the interrelations between the trace-element chemistry of the most common constituents of carbonatites, the geochemistry of these rocks, and their tectonic setting. The rock samples examined represent 21 different localities worldwide. The extent of major- and trace-element substitutions in amphibole, clinopyroxene, trioctahedral micas, dolomite, magnetite and perovskite is investigated in detail. The silicate minerals from carbonatites exhibit much larger compositional diversity than previously recognized. They can incorporate significant amounts of such petrogenetically important elements as Sr, REE, Zr, Nb and Ta. The majority of studied clino-amphibole- and clinopyroxene-group minerals exhibit previously unrecognized a bimodal distribution patterns of REE, which can be explained in terms of crystal chemistry of these phases. The trace-element signature of phlogopite from carbonatites, particularly Nb, Mn, Ni and Cr, is distinctly different from that of phlogopite from kimberlites, and can be used as a reliable petrogenetic indicator. Compositional variations in dolomite reflect magmatic and subsolidus processes in carbonatites. Magnetite from carbonatites follows a well-defined magmatic and previously unrecognized reaction trend. Contrary to prior studies, this mineral is only a minor host of HFSE in carbonatitic rocks. The U-Pb age data, trace-element and Sr-isotopic composition of perovskite from the Afrikanda carbonatite and clinopyroxenite suggest that the two rocks are not related by crystal fractionation. This study underlines the importance of a systematic approach in petrogenetic studies based on trace-element distribution.
|
137 |
Stability of magnetic remanence in multidomain magnetiteMuxworthy, Adrian R. January 1998 (has links)
If a rock is to retain a geologically meaningful magnetic record of its history, it is essential that it contains magnetic minerals which are capable of carrying stable magnetic remanence. Of the natural occurring magnetic minerals, magnetite is the most important because of its abundance and strong magnetic signature. The stability, i.e., the resistance to demagnetisation or reorientation, of magnetic remanence is related to grain size; in smaller grains the magnetic moments align to have single domain (SD) structures, in larger grains complex magnetic patterns are formed (multidomain (MD)). “Classical” domain theory predicts that SD remanence is stable, whilst MD remanence is not. However experimental evidence has shown that both SD and MD grains can have stable remanences. In this thesis the origin of stable MD remanence is examined. There are two opposing theories; one suggests that the stability is due to independent SD-like structures, the other postulates that the stability is due to metastable MD structure. A series of experiments were designed to examine the stability using a selection of characterised synthetic and natural samples. Low-stress hydrothermal recrystallised samples where grown for this study. For the first time, the stability of thermoremanence induced in hydrothermal crystals to cooling was examined. The results agree with previous observations for crushed and natural magnetites, and support kinematic models. The behaviour of SIRM and thermoremanences in MD magnetite to low-temperature cooling to below the crystallographic Verwey transition at 120-124 K (T<sub>v</sub>) and the cubic magnetocrystalline anisotropy isotropic point (T<sub>k</sub>) at 130 K was investigated. On cooling through T<sub>v</sub>, SIRM was observed to decrease and demagnetise, however thermoremanence was found to display a large increase in the magnetisation at T<sub>v</sub>, which was partially re- versible on warming. The size of the anomaly is shown to be dependent on the temperature at which the thermoremanence is acquired, internal stress and grain size. The anomaly is attributed to the large increase in the magnetocrystalline anisotropy which occurs on cooling through T<sub>v</sub> . It is postulated that low-temperature cycling demagnetisation is due to kinematic processes which occur on cooling between room temperature and T<sub>k</sub>. Characterisation of low-temperature treated remanence and partially alternating field demagnetised remanence, suggest that the stable remanence is multidomain. Low-temperature cooling of remanence in single sub-micron crystals was simulated using micromagnetic models. The models predict the observed anomaly for thermoremanence on cooling through T<sub>v</sub>, and also the relative behaviour of SIRM and thermoremanence. The single domain threshold was calculated for the low-temperature phase of magnetite, and was found to be 0.14 microns, compared to 0.07 microns at room temperature.
|
138 |
Iron formation - massive sulfide relationships at Heath-Steele, Brunswick No. 6 (N.B.) and Mattagami Lake, Bell Allard (Quebec)Henriquez, Fernando Jose January 1974 (has links)
No description available.
|
139 |
Heat Treatment Of Iron Ore Agglomerates With Microwave EnergyCirpar, Cigdem 01 February 2005 (has links) (PDF)
Pelletizing is a size enlargement technique employed to process fine-grained
iron-bearing concentrates and powder ores. Mechanical strength of fired pellets
is important for handling. When the pellets undergo metallurgical processing,
their mechanical strength is a measure of their resistance to degradation by
breakage due to impacts and abrasion to which they are exposed in the upper
part of the blast furnace.
In this study, heat treatment of iron ore agglomerates with microwave energy is
investigated. First drying and then heat hardening tests were performed. Two
main properties of pellets were taken into consideration: percent moisture and
magnetite content for the dried pellets and compressive strength and also
magnetite content for the fired pellets. The tests were conducted with different
particle sized pellets, in different durations. In order to increase the oxidation
rate in heat hardening tests, Na2O2 is also added in different percentages.
The results of the study showed that, magnetite pellets can indeed be dried and
heated with microwave energy. However, the attained compressive strength and
v
the oxidation of the fired pellets were not sufficient as compared to pellets
produced by conventional heating
|
140 |
Development of a novel magnetic photocatalyst : preparation, characterisation and implication for organic degradation in aqueous systemsBeydoun, Donia, Chemical Engineering & Industrial Chemistry, UNSW January 2000 (has links)
Magnetic photocatalysts were synthesised by coating a magnetic core with a layer of photoactive titanium dioxide. This magnetic photocatalyst is for use in slurry-type reactors in which the catalyst can be easily recovered by the application of an external magnetic field. The first attempt at producing this magnetic photocatalyst involved the direct deposition of titanium dioxide onto the surface of magnetic iron oxide particles. The photoactivity of these Fe3O4/TiO2 was lower than that of single-phase TiO2 and was found to decrease with an increase in the heat treatment. These observations were explained in terms of an unfavourable heterojunction between the titanium dioxide and the iron oxide core. Fe ion diffusion from the iron oxide core into the titanium dioxide matrix upon heat treatment, leading to a highly doped TiO2 lattice, was also contributing to the observed low activities of these samples. These Fe3O4/TiO2 particles were found to be unstable, with photodissolution of the iron oxide phase being encountered. This photodissolution was dependent on the heat treatment applied, the greater the extent of the heat treatment, the lower the incidence of photodissolution. This was explained in terms of the stability of the iron oxide phases present, as well as the lower photoactivity of the titanium dioxide matrix. In fact, the observed photodissolution was found to be induced-photodissolution. That is, the photogenerated electrons in the titanium dioxide phase were being injected into the lower lying conduction band of the iron oxide core, leading to its reduction and then dissolution. Thus, the approach of directly depositing TiO2 onto the surface of a magnetic iron oxide core proved ineffective in producing a stable magnetic photocatalyst. The introduction of an intermediate passive SiO2 layer between the titanium dioxide phase and the iron oxide phase inhibited the direct electrical contact and hence prevented the photodissolution of the iron oxide phase. Improvements in the photoactivity were seen to be due to the inhibition of both the electronic and chemical interactions between the iron oxide and titanium dioxide phases. Preliminary optimisation experiments revealed that a thin SiO2 layer is sufficient for inhibiting the photodissolution. The thickness of the TiO2 coating was found not to have a significant effect on the photocatalytic performance of the coated particles. Finally, heat treating for 20 minutes at 450??C was sufficient for converting the titanium dioxide into a photoactive phase, longer heating times had no beneficial effect on the photoactivity.
|
Page generated in 0.039 seconds