• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 154
  • 72
  • 40
  • 19
  • 8
  • 7
  • 6
  • 4
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 382
  • 170
  • 68
  • 67
  • 59
  • 52
  • 48
  • 46
  • 36
  • 36
  • 34
  • 33
  • 30
  • 29
  • 28
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
181

Numerical Modeling of Wave Propagation in Strip Lines with Gyrotropic Magnetic Substrate and Magnetostaic Waves

Vashghani Farahani, Alireza 13 June 2011 (has links)
Simulating wave propagation in microstrip lines with Gyrotropic magnetic substrate is considered in this thesis. Since the static internal field distribution has an important effect on the device behavior, accurate determination of the internal fields are considered as well. To avoid the losses at microwave frequencies it is assumed that the magnetic substrate is saturated in the direction of local internal field. An iterative method to obtain the magnetization distribution has been developed. It is applied to a variety of nonlinear nonuniform magnetic material configurations that one may encounter in the design stage, subject to a nonuniform applied field. One of the main characteristics of the proposed iterative method to obtain the static internal field is that the results are supported by a uniqueness theorem in magnetostatics. The series of solutions Mn,Hn, where n is the iteration number, minimize the free Gibbs energy G(M) in sequence. They also satisfy the constitutive equation M = χH at the end of each iteration better than the previous one. Therefore based on the given uniqueness theorem, the unique stable equilibrium state M is determined. To simulate wave propagation in the Gyrotropic magnetic media a new FDTD formulation is proposed. The proposed formulation considers the static part of the electromagnetic field, obtained by using the iterative approach, as parameters and updates the dynamic parts in time. It solves the Landau-Lifshitz-Gilbert equation in consistency with Maxwell’s equations in time domain. The stability of the initial static field distribution ensures that the superposition of the time varying parts due to the propagating wave will not destabilize the code. Resonances in a cavity filled with YIG are obtained. Wave propagation through a microstrip line with YIG substrate is simulated. Magnetization oscillations around local internal field are visualized. It is proved that the excitation of magnetization precession which is accompanied by the excitation of magnetostatic waves is responsible for the gap in the scattering parameter S12. Key characteristics of the wide microstrip lines are verified in a full wave FDTD simulation. These characteristics are utilized in a variety of nonreciprocal devices like edgemode isolators and phase shifters.
182

Numerical Modeling of Wave Propagation in Strip Lines with Gyrotropic Magnetic Substrate and Magnetostaic Waves

Vashghani Farahani, Alireza 13 June 2011 (has links)
Simulating wave propagation in microstrip lines with Gyrotropic magnetic substrate is considered in this thesis. Since the static internal field distribution has an important effect on the device behavior, accurate determination of the internal fields are considered as well. To avoid the losses at microwave frequencies it is assumed that the magnetic substrate is saturated in the direction of local internal field. An iterative method to obtain the magnetization distribution has been developed. It is applied to a variety of nonlinear nonuniform magnetic material configurations that one may encounter in the design stage, subject to a nonuniform applied field. One of the main characteristics of the proposed iterative method to obtain the static internal field is that the results are supported by a uniqueness theorem in magnetostatics. The series of solutions Mn,Hn, where n is the iteration number, minimize the free Gibbs energy G(M) in sequence. They also satisfy the constitutive equation M = χH at the end of each iteration better than the previous one. Therefore based on the given uniqueness theorem, the unique stable equilibrium state M is determined. To simulate wave propagation in the Gyrotropic magnetic media a new FDTD formulation is proposed. The proposed formulation considers the static part of the electromagnetic field, obtained by using the iterative approach, as parameters and updates the dynamic parts in time. It solves the Landau-Lifshitz-Gilbert equation in consistency with Maxwell’s equations in time domain. The stability of the initial static field distribution ensures that the superposition of the time varying parts due to the propagating wave will not destabilize the code. Resonances in a cavity filled with YIG are obtained. Wave propagation through a microstrip line with YIG substrate is simulated. Magnetization oscillations around local internal field are visualized. It is proved that the excitation of magnetization precession which is accompanied by the excitation of magnetostatic waves is responsible for the gap in the scattering parameter S12. Key characteristics of the wide microstrip lines are verified in a full wave FDTD simulation. These characteristics are utilized in a variety of nonreciprocal devices like edgemode isolators and phase shifters.
183

A Study on Nonlinear Resonance of Power Systems

Ning, Chia-Ching 23 October 2005 (has links)
The dissertation studies the nonlinear resonance problems of power systems. Generally speaking, ferroresonance has usually occurred in low-voltage distribution system, especially for potential transformers. Due to the considerable increase of power consumption, the power system is more complex than before. Besides, a number of under-ground cables are used, and transformers¡¦ loss reduce due to improvement of core iron material. These factors could probably result in ferroresnance occurring in extra-high-voltage power system. The dissertation proposed three-phase representation method to analyze unbalance and non-linear system. This method employ magnetically coupled electrical circuit techniques and the original voltage equations can be used without the need for any transformations, which improves significantly computation accuracy. Consequently, it is quite suitable for power system design and incident investigation. Since the traditional d-q-0 model is not well suited for the study of unbalanced faults and requires further transformation, the analytical solution becomes rather complicated and the solutions are still inaccurate. At last we simulated the ferroresonant overvoltages occurring at a nuclear power station in Taiwan in order to investigate the causes and afford mitigation. The simulation results were enough to prove accuracy and practicability of this method.
184

Understanding the Interaction Between Blood Flow and an Applied Magnetic Field

Sinatra, Francy L. 27 October 2010 (has links)
Hemodynamic monitoring is extremely important in the accurate measurement of vital parameters. Current methods are highly invasive or noncontinuous, and require direct access to the patient’s skin. This study intends to explore the modulated magnetic signature of blood method (MMSB) to attain blood flow information. This method uses an applied magnetic field to magnetize the iron in the red blood cells and measures the disturbance to the field with a magnetic sensor [1]. Exploration will be done by experimentally studying in-vitro, as well as simulating in COMSOL the alteration of magnetic fields induced by the flow of a magnetic solution. It was found that the variation in magnetic field is due to a high magnetization of blood during slow flow and low magnetization during rapid flow. The understanding of this phenomenon can be used in order to create a portable, non-invasive, continuous, and accurate sensor to monitor the cardiovascular system.
185

Comparison of soft magnetic materials response to sinusoidal voltage and current excitation

Tatarchuk, John Jacob 30 September 2011 (has links)
A pulse hysteresisgraph system was constructed capable outputting current source and voltages source waveforms. MATLAB scripts were created to analyze the collected data. Three toroidal samples of soft magnetic materials were prepared. Theoretical modeling was done to predict the variation of effective applied magnetic fields inside the toroids from ideal assumptions due to three effects: wire spacing, cylindrical spreading, and eddy current generated fields. Data was collected under sinusoidal voltage source and sinusoidal current source excitation at 1 kHz. Large differences in core loss were noted especially at higher field excitations. Core loss under sinusoidal current source excitation was found to always be greater than or equal to core loss under sinusoidal voltage source. Normal magnetization curves under sinusoidal current and voltage source excitation were also compared. Significant differences were apparent in the magnetization curves of one sample toroid, and slight differences noted in the curves of the other two samples. Eddy currents were offered as a primary mechanism for the difference in core loss between sinusoidal current source and sinusoidal voltage source. A formula to predict the relative eddy current losses to be expected from an arbitrary, periodic voltage waveform shape is given. / text
186

Mechanism and size effects of helicity-dependent all-optical magnetization switching in ferromagnetic thin films / Mécanisme et effets de tailles du retournement tout-optique dans les couches minces ferromagnétiques

Quessab, Yassine 24 September 2018 (has links)
Pour des applications technologiques d’enregistrement magnétique de l’information à haute densité et vitesse d’écriture et de lecture ultra-rapide, les chercheurs se sont penchés vers des méthodes de manipulation de l’aimantation sans application de champ magnétique externe. Il a été découvert qu’il était possible de renverser de manière déterministe l’aimantation de plusieurs matériaux ferri- et ferro-magnétiques à l’aide uniquement d’impulsions laser ultracourtes polarisées circulairement. Ce retournement tout-optique s’est avéré être un processus cumulatif nécessitant plusieurs impulsions ultracourtes dans les matériaux ferromagnétiques. Notamment dans les multicouches (Co/Pt), le retournement tout-optique se fait en deux étapes : une désaimantation indépendamment de l’hélicité suivie d’une ré-aimantation dans une direction ou l’autre selon l’hélicité. Pour autant, le mécanisme à l’origine du rétablissement de l’ordre magnétique n’a pas été étudié jusqu’à présent. Dans cette thèse, nous avons étudié le mécanisme de renversement de l’aimantation dans les couches ferromagnétiques résultant de l’excitation par impulsions laser ultracourtes polarisées circulairement. Pour cela, nous étions intéressé par la réponse d’une paroi de domaine dans les couches minces de Pt/Co/Pt à la suite d’une excitation laser et en fonction de la polarisation de la lumière. Nous avons démontré la possibilité d’induire un déplacement tout-optique et déterministe d’une paroi de domaine. Nous montrons que la propagation de la paroi résulte de la compétition entre trois contributions : le gradient de température dû aux effets de chauffage par le laser, l’effet de l’hélicité de la lumière et les effets de piégeages de la paroi. Par ailleurs, par mesures expérimentales du dichroïsme circulaire, nous excluons un mécanisme purement thermique du déplacement de paroi. Ainsi nous confirmons que le retournement tout-optique des couches ferromagnétiques se fait par une nucléation suivie d’une ré-aimantation par propagation déterministe des parois de domaines selon l’hélicité. De plus, nous avons exploré la possibilité d’utiliser le retournement tout-optique dans des dispositifs spintroniques pour l’enregistrement de l’information à haute densité. Pour se faire, il est nécessaire d’étudier les effets de tailles du retournement lorsque le matériau est structuré en îlots à l’échelle du micro- ou nanomètre. Nous avons montré qu’un plus grand nombre d’impulsions laser est nécessaire afin de renverser l’aimantation de micro-disques comparés à la couche continue ferromagnétique. Il en résulte que le champ dipolaire aide le renversement de l’aimantation dans les couches continues rendant ainsi le retournement tout-optique énergétiquement plus favorable / Over the past decade, the demand for an even higher capacity to store data has been gradually increasing. To achieve ultrafast and ultrahigh density magnetic data storage, low-power methods to manipulate the magnetization without applying an external magnetic field has attracted growing attention. The possibility to deterministically reverse the magnetization with only circularly polarized light was evidenced in multiple ferri- and ferro-magnetic materials. This phenomenon was called helicity-dependent all-optical switching (HD-AOS). In ferromagnets, it was demonstrated that HD-AOS was a cumulative and multishot process with a helicity-independent demagnetization followed by a helicity-dependent magnetization recovery. Yet, the microscopic mechanism of this helicity-dependent remagnetization remained highly debated. In this thesis, we investigated the magnetization reversal mechanism of all-optical switching in ferromagnetic materials. To explore a potential switching process through domain nucleation and domain wall (DW) propagation, we studied the response of a DW upon femto- or pico-second laser irradiation in Co/Pt thin films that exhibit HD-AOS. We reported helicity-dependent all-optical domain wall motion. We demonstrated that it results from the balance of three contributions: the temperature gradient due to the laser heating, the helicity effect and the pinning effects. By measuring the magnetic circular dichroism, a purely thermal mechanism of the laser-induced DW motion appears to be excluded. Furthermore, we examined the size effects in AOS in Co/Pt films patterned into microdots with a diameter between 10 and 3 μm. This allowed us to explore the role of the dipolar field in the switching mechanism. We discovered that a larger number of laser pulses was required to reverse the magnetization of a microdot compared to the continuous film. This indicated that the dipolar field actually eases the magnetization reversal in the full film. Thus, AOS is less energy-efficient in patterned films, hence making Pt/Co/Pt multilayers not an ideal candidate for integrating AOS in spintronic devices
187

Dynamique de parois chirales dans les multicouches magnétiques avec anisotropie perpendiculaire / The dynamics of chiral domain walls in multilayer films with perpendicular magnetic anisotropy

Chaves, Dayane de Souza 25 June 2018 (has links)
L'objectif de cette thèse a été d'étudier la dynamique de parois de domaines dans des couches minces magnétiques ayant anisotropie perpendiculaire, dans un empilement non-centrosymétrique. Dans ce type de système la compétition entre l'interaction d'échange de Heisenberg et un terme d'échange antisymétrique appelé interaction Dzyaloshinskii-Moriya interfaciale, favorise des textures magnétiques non colinéaires avec une chiralité définie, comme les parois de Néel chirales et les skyrmions. Dans ce travail nous nous sommes intéressés à la dynamique induite par un champ magnétique ou un courant électrique de parois Néel chirales dans une tricouches constituée d'une fine couche de cobalt déposée sur du platine, et recouverte par un oxyde.Nous avons démontré que la structure statique et la dynamique des parois est fortement impactée par la présence de la DMI. La DMI favorise une structure Néel avec une chiralité bien définie (plutôt que la structure de Bloch trouvé en général dans des systèmes symétriques). En comparant des parois dans Pt/Co/Pt (DMI=0) et Pt/Co/AlOx (DMI forte) nous avons montré que en la présence de DMI les parois de domaines peuvent être déplacées plus efficacement avec un champ magnétique. La stabilisation de la structure interne de la paroi par la DMI déplace le régime precessionnel à de plus hauts champs magnétiques et permet d'obtenir des vitesses importantes.En opposition à ce que prédisent les modèles 1D, nous montrons que en la présence de fort DMI la vitesse de paroi sature après le champ de Walker, et que la vitesse de saturation est proportionnelle au rapport entre la force de la DMI et l'aimantation à saturation (D/Ms). L'augmentation de la vitesse de saturation dans des systèmes avec faible Ms a été démontrée en comparant la dynamique de parois dans Pt/Co/GdOx et Pt/Co/Gd. Ceci implique aussi que en connaissant Ms, la mesure de la vitesse de saturation fournit une méthode originale pour quantifier l'interaction Dzyaloshinskii-Moriya interfaciale, comme nous montrons dans ce travail. Cette méthode a été utilisée pour mesurer la DMI dans des tricouches Pt/Co/AlOx avec oxydation variable de l'interface supérieure du Co. Nous montrons que en plus de la forte DMI de l'interface Pt/Co, l'interaction Co/oxyde contribue avec une DMI du même signe, la force de laquelle dépend du dégrée d'oxydation de l'interface. Nous observons aussi que cette DMI est proportionnelle à l'anisotropie magnétique perpendiculaire, ce qui suggère que les deux effets ont une origine commune. Pour finir, nous avons montré des résultats préliminaires de dynamique de parois induite par champ et courant dans des systèmes ferrimagnétiques GdCo. Si d'une part près de la compensation les parois de domaines dans des tricouches Pt/GdCo/Ta peuvent être déplacées seulement avec des champs très forts, d'autre part le courant est très efficace et les courants de dépiégeage très faibles. Nous avons attribué cet effet à la dépendance en 1/Ms du couple de spin-orbite qui agit sur l'aimantation. / The aim of this thesis has been to study domain wall dynamics in magnetic thin films with perpendicular magnetic anisotropy embedded in a non centrosymmetric stack. In this kind of system the competition between the symmetric Heisenberg exchange and an antisymmetric exchange term, called the interfacial Dzyaloshinskii-Moriya interaction (DMI), favours non collinear magnetic textures with a fixed chirality, like chiral Néel domain walls and skyrmions. In this work we have been interested in the field and current-driven dynamics of chiral Néel walls in trilayer stacks, typically consisting of a thin Co film deposited on Pt and capped with an oxide.We have shown that the statics and dynamics of a domain wall (DW) is strongly affected by the DMI. The DMI favours Néel internal structure (rather than the Bloch structure usually found in symmetric systems) with a fixed chirality. By comparing DWs in Pt/Co/Pt (no DMI) and Pt/Co/AlOx (strong DMI), we have shown that in the presence of DMI, DWs can be moved more efficiently by a magnetic field. The stabilization of the internal DW structure by the DMI allows the precessional regime to be pushed to large magnetic fields and large velocities to be reached.Opposite to what is predicted by 1D models we show that in the presence of DMI, the DW velocity saturates after the Walker field, and that the saturation velocity is proportional to the ratio of the DMI strength and the saturation magnetization (D/Ms). The enhancement of the saturation velocity in systems with reduced Ms is shown by comparing DW dynamics in Pt/Co/GdOx and Pt/Co/Gd stacks. This also means that, knowing Ms, measuring the DW saturation velocity provides an original method to quantify the interfacial Dzyaloshinskii-Moriya interaction, as we show in this work.This method has been used to measure the DMI interaction in Pt/Co/AlOx trilayers in which the top Co interface presents a varying degree of oxidation. We show that besides the strong DMI at the Pt/Co interface, the Co/oxide interface also provides a DMI contribution of the same sign, whose strength depends on the degree of oxidation of the Co/AlOx interface. We also observe that this DMI scales with the perpendicular magnetic anisotropy, which suggest a common origin for the two effects. Finally we have shown preliminary results of field- and current-driven dynamics of DWs in a ferrimagnetic system (GdCo). While close to the compensation composition domain walls in Pt/GdCo/Ta trilayers can be moved to high velocities only by very high magnetic fields, the current driven dynamics is very efficient and depinning currents low. This effect is attributed to the 1/ Ms dependence of the spin-orbit torque acting on the DW magnetization.
188

Etude d'un auto-oscillateur non-isochrone : Application à la dynamique non-linéaire de l'aimantation induite par transfert de spin / Study of a non-isochronous auto-oscillator : application to the nonlinear dynamics of the magnetization induced by spin transfer torque

Quinsat, Michaël 28 September 2012 (has links)
Les oscillateurs à transfert de spin (STO) sont des oscillateurs Radiofréquence nanométriques dont la fréquence peut être variée d'un ordre de grandeur. Cette forte agilité en fréquence provient des propriétés non-linéaires de la dynamique de l'aimantation induite par le transfert de spin (STT) dans des multicouches magnétiques nano-structurées. Cette forte agilité en fréquence a le désavantage d'induire une forte sensibilité au bruit. La pureté spectrale des STO est alors bien en dessous des pré-requis pour les applications en télécommunications. Les principales propriétés de la dynamique de l'aimantation induite par le STT ont été décrites simplement à l'aide de la théorie non-linéaire des ondes de spin. Cependant des informations importantes sur le mode d'excitation sont enfouies dans des paramètres phénoménologiques tels que le couplage amplitude-phase NU et le taux de relaxation Gp. La détermination de ces paramètres avec précision est d'un intérêt primordial pour la description de la dynamique non-linéaire. Cette thèse décrit plusieurs méthodes expérimentales pour extraire ces paramètres. La première est la spectroscopie de bruit depuis le domaine temporel qui permet l'extraction des Densités Spectrales de Puissance du bruit d'amplitude et de phase. Leur analyse dans le cadre des modèles théoriques permet non seulement d'extraire directement les paramètres non-linaires mais également de quantifier le bruit de phase qui a un intérêt technologique. Ceci est démontré pour des dispositifs basés sur des jonctions tunnels magnétiques. La deuxième méthode est basée sur l'analyse des largeurs de raies des harmoniques du signal, où il est montré que du fait des propriétés non-isochrones des STO, la relation entre Dfn et Df1 est non triviale et permet l'extraction de NU et Gp. Nous utilisons alors toutes les informations obtenues sur le régime autonome de la dynamique des STO pour comprendre leur dynamique non-autonome qui sont des pré-requis à leurs utilisations dans des architectures RF complexes. / Spin Torque Oscillators (STO) are nano-sized Radio-Frequency oscillators whose frequency agility can be tuned by an order of magnitude. This tuning originates from the non-linear properties of the underlying magnetization dynamics that is induced by spin transfer torque (STT) in multilayered magnetic nanostructures. Being highly tunable in frequency has the inconvenient of creating a very strong sensitivity to noise. As a result the spectral purity of STOs is far below the one required for applications for instance in telecommunications. The magnetization dynamics induced by STT has been described theoretically in the frame of nonlinear spin wave theory that makes the essential features of the underlying properties very transparent. However important information on the excitation mode are "buried" in phenomenological parameters such as NU the amplitude-phase coupling and Gp the amplitude relaxation rate. Determining these parameters with accuracy from experiments is thus an important issue. This thesis describes several experimental methods to extract these parameters. The first is time domain noise spectroscopy which permits to extract phase and amplitude noise Power Spectral Densities. Their analysis in the frame of theoretical models allows direct extraction of the nonlinear parameters, but also to quantify the technological relevant phase noise. This is demonstrated for magnetic tunnel junction devices. A second method is the analysis of higher harmonics linewidth, where it is shown that due to the non-isochronous property of STOs, the relationship between Dfn and Df1 is non-trivial and allows to extract NU and Gp. We then apply the information gathered on the autonomous dynamics of STOs to understand the non-autonomous dynamics of STOs that are a prerequisite for the use of STOs in complex RF architectures. It is shown experimentally how the nonlinear parameters influence this non-autonomous behaviour.
189

Pompage de spin et absorption de spin dans des hétérostructures magnétiques / Spin pumping and spin absorption in magnetic heterostructures

Ghosh, Abhijit 12 November 2012 (has links)
L'interaction entre électrons de conduction itinérants et électrons localisés dans les hétérostructures magnétiques est à l'origine d'effets tels que le transfert de moment de spin, le pompage de spin ou l'effet Hall de spin. Cette thèse est centrée sur le phénomène de pompage de spin : une couche ferromagnétique (FM) en précession injecte un courant de spin pur dans les couches adjacentes. Ce courant de spin peut être partiellement ou totalement absorbé par une couche, dite réservoir de spin, placée directement en contact avec le matériau ferromagnétique ou séparée par une couche d'espacement. L'absorption de la composante transverse du courant de spin induit une augmentation de l'amortissement de la précession ferromagnétique de la couche libre. Cet effet à été mesuré par des expériences de résonance ferromagnétique avec, pour la couche en précession FM, trois matériaux ferromagnétiques différents (NiFe, CoFeB et Co), et pour la couche de réservoir de spin, différents matériaux paramagnétiques (Pt, Pd, Ru), ferromagnétiques et antiferromagnétiques. Dans un premier temps, nous avons vérifié que le facteur d'amortissement non-local généré est de type amortissement de Gilbert, et qu'il est inversement proportionnel à l'épaisseur de la couche en précession FM. L'analyse de l'augmentation de l'amortissement a été réalisée dans le cadre du modèle de pompage de spin adiabatique proposé par Tserkovnyak et al.. Dans un second temps et suivant ce modèle, nous avons extrait les paramètres de conductance avec mélange de spin à l'interface g↑↓ pour différentes interfaces, ces paramètres déterminent le transport du courant de spin à travers des interfaces ferromagnétique/métal non-magnétique. Un troisième résultat important de cette thèse porte sur la longueur d'absorption du courant de spin dans des matériaux ferromagnétiques et paramagnétiques. Celle-ci varie considérablement d'un matériau à l'autre. Pour les matériaux ferromagnétiques, la longueur d'absorption du courant de spin est linéaire par rapport à l'épaisseur de la couche réservoir de spin, avec pour longueur caractéristique ~ 1 nm. Ce résultat est en cohérence avec les théories antérieures et avec les valeurs de longueur de déphasage de spin pour le transfert de moment de spin dans les matériaux ferromagnétiques. Dans les paramagnétiques tels que Pt, Pd, Ru, la longueur d'absorption est soit linéaire soit exponentielle selon que le réservoir paramagnétique est directement en contact avec la couche en précession ou bien séparé par une couche mince d'espacement en Cu. La longueur caractéristique correspondante est inférieure à la longueur de diffusion de spin. Des mesures complémentaires de dichroïsme circulaire magnétique par rayons X ont révélé une induction de moments magnétiques dans les matériaux paramagnétiques comme Pd, Pt, lorsque couplé directement ou indirectement avec une couche FM. Ce résultat fournit une explication de la dépendance en épaisseur linéaire observée dans les hétérostructures en contact direct. Etant donné que le pompage de spin et le couple de transfert de spin (STT) sont des processus réciproques, les résultats de cette thèse sur la conductance avec mélange de spin, la longueur d'absorption de spin et les moments de spin induits sont également d'un grand intérêt pour les études de transfert de moment de spin, ainsi que d'effet Hall de spin, direct et inverse. L'avantage des études présentées ici réside dans le fait qu‘elles sont effectuées sur des couches minces continues, sans aucune étape de nanofabrication. / In magnetic heterostructures, the interaction between itinerant conduction electrons with localized electrons is at the origin of effects such as the spin momentum transfer, spin pumping or the spin Hall effect. This thesis is centred on the phenomenon of spin pumping, which states that a precessing ferromagnetic (FM) layer injects a pure spin current into its adjacent metallic layers. This spin current can be partially or fully absorbed by a spin sink layer, placed directly in contact with the ferromagnet or separated by a spacer layer. The absorption of the transverse component of the spin current results in an enhancement of the effective damping of the precessing ferromagnet which we have studied using ferromagnetic resonance experiments for three different ferromagnets (NiFe, CoFeB and Co) as the precessing FM layer and various paramagnets (Pt, Pd, Ru), ferromagnets or an antiferromagnet as the spin sink layer. As a first step we have verified that the additional non-local damping is Gilbert type, and that it depends inversely on the thickness of the FM precessing layer. The analysis of the enhanced damping was done in the frame of an adiabatic spin pumping model proposed by Tserkovnyak et al. Within this model we extracted as a second step the interfacial spin mixing conductance parameters g↑↓ for various interfaces, which determine the spin current transport through FM/NM interfaces. A third important result of the thesis concerns the absorption length of spin currents in ferromagnets and paramagnets which we found can be very different. In ferromagnets the spin current absorption is linear with the spin sink layer thickness, with a characteristic length of ~1nm. This is consistent with theory and the spin dephasing length for spin momentum transfer in ferromagnets. In paramagnets such as Pt, Pd, Ru, the spin current absorption is either linear or exponential depending on whether the paramagnetic is directly in contact with the FM or separated by a thin Cu spacer layer. The corresponding characteristic length is less than the spin diffusion length. Complementary X-ray magnetic circular dichroism measurements revealed induced magnetic moments in paramagnets like Pd, Pt when directly or indirectly coupled with a FM layer. This provides an explanation for the linear thickness dependence for the direct contact heterostructures. Since spin pumping and spin transfer torque (STT) are reciprocal processes the results of this thesis on the spin mixing conductances, spin absorption length scales and induced moments will also be of great interest for studies on spin momentum transfer, Spin Hall effect and Inverse Spin Hall effect. The convenience being that these studies can be done on continuous films and no nanofabrication is required.
190

Une étude expérimentale de la coercivité des aimants NdFeB / Coercivity in hard magnetic materials

Ciuta, Georgeta 12 July 2013 (has links)
Les processus d'aimantation dans des aimants de type NdFeB ont été étudiés dans le cadre de cette thèse, sur la base de mesures d'aimantation macroscopiques et de caractérisations locales (MFM). Deux types d'échantillons ont été analysés : des aimants massifs dont les propriétés excellentes résultent d'un processus d'infiltration de NdCu le long des joints de grain (échantillons fournis par Toyota Motor Corporation) et des échantillons sous forme de couches épaisses, dont les microstructures, et, de ce fait les propriétés magnétiques, diffèrent. La variation thermique du champ coercitif et celle du volume d'activation ont été analysées dans le cadre de deux modèles, respectivement dénommé micromagnétique et global. Les valeurs déduites des deux paramètres principaux caractérisant la coercitivité (N représentant les effets du champ démagnétisant et α reliant le champ coercitif aux propriétés magnétiques intrinsèques de la phase dure) indiquent que dans les aimants massifs les différences de coercitivité entre échantillons sont dues pour l'essentiel à la variation de N alors que dans les films, c'est la variation du paramètre α qui joue le rôle principal. Le volume d'activation à une température donnée, dérivé de mesures de trainage magnétique, a des valeurs proches pour tous les échantillons massifs. Au contraire, il varie d'un échantillon à l'autre dans le cas des films : plus le champ coercitif est fort, plus petit est le volume d'activation. Une conclusion générale de cette étude est que les propriétés magnétiques au sein du volume d'activation sont proches de celles de la phase dure Nd2Fe14B. Le lien entre microstructure et coercivité a été examiné dans les films épais par microscopie de force magnétique (MFM). Des observations de films dans différents états rémanents le long du cycle d'hystérésis ont été réalisées. Des « domaines d'interactions » ont été révélés dans les films de faible coercitivté. Dans de tels films, comme dans ceux de coercitivité moyenne, le renversement d'aimantation est dominé par la propagation de domaines, alors que dans les films de plus forte coercitivité, la nucléation suivie de la propagation de domaines d'orientation inverse à celle de l'aimantation principale dominent. / Magnetization reversal in NdFeB-type permanent magnets was studied in this thesis, based on both global (magnetometry) and local (magnetic force microscopy) experimental techniques. Two types of samples were analyzed: bulk magnets of which magnetic properties are greatly improved as a result of NdCu infiltration along the grain boundaries (samples provided by Toyota Motor Corporation) and thick film magnets with different microstructures and thus different coercive fields. The temperature dependence of the coercive field and that of the activation volume were analyzed in the framework of two models: the micromagnetic and the global model. The derived values of the two main parameters characterizing coercivity (N representing demagnetizing field effects and α linking the coercive field to the intrinsic magnetic properties of the hard phase) indicate that, in bulk magnets, the difference in coercivity between different samples is related mainly to N whereas in films the parameter alfa plays the leading role. The activation volume derived from magnetic after effect measurements is similar for all bulk samples at a given temperature. On the opposite, it varies in the case of films : the higher the coercive field, the smaller the activation volume. Altogether, it is concluded that the magnetic properties within the activation volume are close to those of the main phase. The link between microstructure and coercivity was studied in thick films, using magnetic force microscopy. Imaging of films that present different microstructures was performed in different remanent states along the hysteresis cycle. Interaction domains were observed in the case of films with lower coercive field. In such low coercivity films, as well as in medium coercivity ones, magnetization reversal is dominated by domain wall propagation, instead of nucleation + propagation in high coercivity films.

Page generated in 0.1986 seconds