Spelling suggestions: "subject:"magnetosome"" "subject:"magnetosomes""
1 |
Caractérisation de MamK et Mamk-like les "actins-like" responsables de l'alignement des magnétosomes chez Magnetsirillum magneticum AMB-1 / Characterization of MamK and MamK-like the "actins-like" responsible for the alignment of magnetosomes in Magnetospirillum magneticum AMB-1.Mannoubi, Soumaya 26 February 2014 (has links)
Les bactéries magnétotactiques (MTB) ont la capacité de s'orienter dans un champ magnétique grâce à un organite procaryote constitué d'un nanocristal magnétique biominéralisé et entouré d'une membrane biologique : le magnétosome. La synthèse de cet organite est un processus complexe contrôlé génétiquement par une série de gènes spécifiques aux MTB (les gènes mam) qui sont regroupés sur le chromosome bactérien. Chez la souche modèle Magnetospirillum magneticum AMB-1 cet ensemble de gènes forme un îlot génomique (MAI) auquel s'ajoute un second groupe distinct de 7 gènes homologues aux gènes mam (gènes mam-like) récemment identifié dont le rôle physiologique est très peu caractérisé. Parmi les produits des gènes mam, MamK est impliqué dans l'alignement des magnétosomes. Cette « actin-like » prokaryote qui forme des filaments selon un processus ATP-dépendant a été caractérisée ces dernières années. Dans le MIS de AMB-1, un gène homologue mamK-like a été identifié. Ainsi différentes approches pluridisciplinaires ont été mises en place pour comprendre le rôle de MamK et MamK-like. L'expression des gènes du MIS a été quantifiée. Les souches dépourvues des gènes mamK et mamK-like ainsi que le double mutant ont été obtenues puis phénotypées par différentes techniques d'imagerie. Les interactions entre les deux protéines ont été également testées. Enfin, les deux protéines ont été et leurs propriétés biochimiques caractérisées. L'ensemble de ces données nous permet de proposer un modèle selon lequel MamK et MamK-like participeraient tous deux à l'alignement des magnétosomes bactériens, vraisemblablement par la formation de filaments hybrides. / Magnetotactic bacteria (MTB) have the ability to orient in a magnetic field through a prokaryotic organelle composed of a magnetic nanocrystal surrounded by a biological membrane: the magnetosome. The synthesis of this organelle is a genetically complex process controlled by a series of specific genes (mam genes) grouped together on the bacterial chromosome. In the strain model Magnetospirillum magneticum AMB-1 this set of genes form a genomic island (MAI) and a second distinct group of seven genes homologous to mam genes (mam-like genes) recently identified. The physiological role of this islet magnetosome (MIS) is very little characterized to date.Among the products of mam genes, MamK is involved in the alignment of the magnetosomes. This « actin-like » which forms prokaryote filaments according an ATP - dependent process has been characterized in recent years. In the MIS of AMB-1, a homologous gene mamK-like was identified. And various multidisciplinary approaches have been developed to understand the role of MamK and MamK-like. The MIS gene expression was quantified. The strains lacking genes of mamK, mamK-like and the obtained of double mutant were then phenotyped by different imaging techniques. The interactions between the two proteins were also tested. Finally, the two proteins were overexpressed and their biochemical properties characterized. All of these data allows us to propose a model whereby MamK and MamK-like participate in both the alignment of bacterial magnetosomes, presumably by the formation of hybrid filaments.
|
2 |
Biological and biomimetic formation and organization of magnetic nanoparticlesFaivre, Damien January 2014 (has links)
Biological materials have ever been used by humans because of their remarkable properties. This is surprising since the materials are formed under physiological conditions and with commonplace constituents. Nature thus not only provides us with inspiration for designing new materials but also teaches us how to use soft molecules to tune interparticle and external forces to structure and assemble simple building blocks into functional entities. Magnetotactic bacteria and their chain of magnetosomes represent a striking example of such an accomplishment where a very simple living organism controls the properties of inorganics via organics at the nanometer-scale to form a single magnetic dipole that orients the cell in the Earth magnetic field lines.
My group has developed a biological and a bio-inspired research based on these bacteria. My research, at the interface between chemistry, materials science, physics, and biology focuses on how biological systems synthesize, organize and use minerals. We apply the design principles to sustainably form hierarchical materials with controlled properties that can be used e.g. as magnetically directed nanodevices towards applications in sensing, actuating, and transport.
In this thesis, I thus first present how magnetotactic bacteria intracellularly form magnetosomes and assemble them in chains. I developed an assay, where cells can be switched from magnetic to non-magnetic states. This enabled to study the dynamics of magnetosome and magnetosome chain formation. We found that the magnetosomes nucleate within minutes whereas chains assembles within hours. Magnetosome formation necessitates iron uptake as ferrous or ferric ions. The transport of the ions within the cell leads to the formation of a ferritin-like intermediate, which subsequently is transported and transformed within the magnetosome organelle in a ferrihydrite-like precursor. Finally, magnetite crystals nucleate and grow toward their mature dimension.
In addition, I show that the magnetosome assembly displays hierarchically ordered nano- and microstructures over several levels, enabling the coordinated alignment and motility of entire populations of cells. The magnetosomes are indeed composed of structurally pure magnetite. The organelles are partly composed of proteins, which role is crucial for the properties of the magnetosomes. As an example, we showed how the protein MmsF is involved in the control of magnetosome size and morphology. We have further shown by 2D X-ray diffraction that the magnetosome particles are aligned along the same direction in the magnetosome chain. We then show how magnetic properties of the nascent magnetosome influence the alignment of the particles, and how the proteins MamJ and MamK coordinate this assembly. We propose a theoretical approach, which suggests that biological forces are more important than physical ones for the chain formation. All these studies thus show how magnetosome formation and organization are under strict biological control, which is associated with unprecedented material properties. Finally, we show that the magnetosome chain enables the cells to find their preferred oxygen conditions if the magnetic field is present.
The synthetic part of this work shows how the understanding of the design principles of magnetosome formation enabled me to perform biomimetic synthesis of magnetite particles within the highly desired size range of 25 to 100 nm. Nucleation and growth of such particles are based on aggregation of iron colloids termed primary particles as imaged by cryo-high resolution TEM. I show how additives influence magnetite formation and properties. In particular, MamP, a so-called magnetochrome proteins involved in the magnetosome formation in vivo, enables the in vitro formation of magnetite nanoparticles exclusively from ferrous iron by controlling the redox state of the process. Negatively charged additives, such as MamJ, retard magnetite nucleation in vitro, probably by interacting with the iron ions. Other additives such as e.g. polyarginine can be used to control the colloidal stability of stable-single domain sized nanoparticles.
Finally, I show how we can “glue” magnetic nanoparticles to form propellers that can be actuated and swim with the help of external magnetic fields. We propose a simple theory to explain the observed movement. We can use the theoretical framework to design experimental conditions to sort out the propellers depending on their size and effectively confirm this prediction experimentally. Thereby, we could image propellers with size down to 290 nm in their longer dimension, much smaller than what perform so far. / Biologische Materialien wie Knochen, Muscheln und Holz wurden von den Menschen seit den ältesten Zeiten verwendet. Diese biologisch gebildeten Materialien haben bemerkenswerte Eigenschaften. Dies ist besonders überraschend, da sie unter physiologischen Bedingungen und mit alltäglichen Bestandteilen gebildet sind. Die Natur liefert uns also nicht nur mit Inspiration für die Entwicklung neuer Materialien, sondern lehrt uns auch, wie biologische Additiven benutzen werden können, um einfache synthetische Bausteine in funktionale Einheiten zu strukturieren.
Magnetotaktischen Bakterien und ihre Kette von Magnetosomen sind ein Beispiel, wo einfache Lebewesen die Eigenschaften von anorganischen Materialien steuern, um sich entlang den magnetischen Feldlinien der Erde zu orientieren. Die von den Bakterien gebildeten Magnetosomen sind von besonderem Interesse, da mit magnetischen Eisenoxid-Nanopartikeln in den letzten zehn Jahren einer Vielzahl von Bio-und nanotechnologischen Anwendungen entwickelt worden sind.
In dieser Arbeit stelle ich eine biologische und eine bio-inspirierte Forschung auf der Grundlage der magnetotaktischen Bakterien vor. Diese Forschung verbindet die neuesten Entwicklungen von Nanotechnik in der chemischen Wissenschaft, die neuesten Fortschritte der Molekularbiologie zusammen mit modernen Messverfahren. Mein Forschungsschwerpunkt liegt somit an der Schnittstelle zwischen Chemie, Materialwissenschaften, Physik und Biologie. Ich will verstehen, wie biologische Systeme Materialien synthetisieren und organisieren, um Design-Prinzipien zu extrahieren, damit hierarchischen Materialien mit kontrollierten Eigenschaften nachhaltig gebildet werden.
|
3 |
Greigite et magnétite : les déterminants environnementaux et génétiques contrôlant la biominéralisation chez les bactéries magnétotactiques / Greigite and magnetite : environmental and genetic determinants controlling biomineralization in magnetotactic bacteriaDescamps, Elodie 12 February 2018 (has links)
Les bactéries magnétotactiques représentent un groupe d’une grande diversité écologique et phylogénétique. Elles sont capables de biominéraliser des nanocristaux de magnétite [un oxyde de fer (Fe(II)Fe(III)2O4)] ou de greigite [un sulfure de fer (Fe(II)Fe(III)2S4)] dans leurs magnétosomes, organites alignés en chaînes permettant la navigation le long des lignes de champ magnétique terrestre. Jusqu'à récemment, seules des souches produisant de la magnétite étaient disponibles en culture pure, conduisant à des études sur les mécanismes de biominéralisation de cet oxyde de fer. En 2011, une nouvelle bactérie capable de former de la magnétite et de la greigite, Desulfamplus magnetovallimortis souche BW-1, a été cultivée avec succès en laboratoire. Dans cette thèse, nous proposons d'utiliser une approche intégrée et multidisciplinaire pour comprendre les mécanismes de biominéralisation de la greigite en utilisant comme modèle d’étude la souche BW-1. Nous avons donc cherché à déterminer les conditions environnementales et biologiques favorisant la formation de la magnétite et de la greigite. Ces travaux ont également conduit à la caractérisation physiologique et phylogénétique de BW-1. Puis, l’utilisation d’approches globales et ciblées de transcriptomique ont permis d'évaluer le taux d'expression des gènes impliqués dans la formation des magnétosomes (magnétite vs. greigite) dans diverses conditions de croissance. Une approche de protéomique a permis d’apporter des informations supplémentaires à cette étude. Ces résultats ont permis de progresser dans la compréhension fondamentale de la biominéralisation in vivo, en particulier pour des bactéries formant de la greigite. / Magnetotactic bacteria represent a phylogenetically and ecologically diverse group of prokaryotes able to biomineralize magnetic nanocrystals composed of magnetite [an iron oxide (Fe(II)Fe(III)2O4)] or greigite [an iron sulfide (Fe(II)Fe(III)2S4)] in their magnetosomes, a prokaryotic organelle whose cytoplasmic alignement in chain allows the cell to navigate along the Earth’s magnetic field lines. Until recently, only magnetite-producing strains were available in pure culture. Thus, only the magnetite biomineralization has been studied. In 2011, a new bacterium able to form both magnetite and greigite, Desulfamplus magnetovallimortis strain BW-1, was isolated from Death Valley, California and cultivated in pure culture. In this work, we propose to use an integrated and multidisciplinary approach to understand the mechanisms involved in greigite biomineralization in BW-1 strain. First, we determined the environmental and biological conditions in which magnetite and greigite are formed. This first part of my thesis also contributed to the physiologic and phylogenetic characterization of this bacterium. Secondly, we used global and targeted transcriptomic approaches to evaluate the transcription levels of genes putatively involved in magnetosomes formation (magnetite vs. greigite) under various growth conditions. A proteomic approach provided additional informations to this study.Results obtained during my thesis contribute to the understanding of in vivo biomineralization, particularly for greigite production in magnetotactic bacteria.
|
4 |
Croissance et synthèse de magnétosomes chez la bactérie magnétotactique marine Magnetospira sp (souche QH-2) / Growth and magnetosome biosynthesis by the marine magnetotactic bacterium Magnetospira sp. (strain QH-2)Fuduche, Maxime 10 July 2017 (has links)
Les bactéries magnétotactiques (MTB) ont la particularité de s’orienter le long des lignes de champ magnétique terrestre. Ce comportement est lié à la présence d’organites intracellulaires appelés magnétosomes, constitués d’un nanocristal de fer magnétique enveloppé d’une membrane biologique. L’un des obstacles majeurs rencontrés dans l’étude des MTB microaérophiles réside dans la difficulté à les cultiver, notamment du fait de leur extrême sensibilité à l’oxygène, nécessaire pour la croissance mais qui en même temps inhibe fortement la synthèse des magnétosomes. Dans ce travail, un protocole d’incubation en bioréacteur d’une MTB marine récemment isolée, Magnetospira sp. (QH-2), a été développé. Le contrôle précis des conditions de croissance a permis de déterminer finement la gamme de sensibilité de la souche à la pression partielle d’oxygène (pO2) et de préciser son métabolisme hétérotrophe, basé sur la consommation concomitante du succinate et de l’histidine. Dans un autre volet, l’analyse par RT-qPCR du niveau d’expression des gènes impliqués dans la synthèse des magnétosomes a permis de démontrer chez QH-2 une régulation extrêmement fine de ce processus de biominéralisation, dépendante de la présence de fer et des conditions d’oxygénation. Nos résultats mettent en évidence un lien indirect entre la synthèse des magnétosomes et le métabolisme général du fer chez QH-2. La mise au point d’un nouveau dispositif de culture a permis de multiplier le taux de croissance de QH-2 par cinq comparé aux cultures traditionnelles réalisées en flacons. Cet outil pourra être utilisé à l’avenir pour isoler et cultiver d’autres microorganismes ayant des besoins en oxygène spécifiques. / Magnetotactic bacteria (MTB) have the ability to orient themselves along geomagnetic field lines. This behavior is linked to the presence of intracellular organelles called magnetosomes, which are membrane-enclosed magnetic iron minerals. One of the major obstacles to the study of microaerophilic MTB is their fastidiousness with regard to their growth, due to their extreme sensitivity to oxygen that is required for cell growth but also strongly inhibits magnetosome synthesis. In this thesis, a method for the incubation in a bioreactor of a newly isolated marine MTB, Magnetospira sp. (strain QH-2), has been developed. The precise control of the growing conditions allowed us to determine the pO2 (oxygen partial pressure) range tolerated by the strain and to clarify its heterotrophic metabolism based on the concomitant consumption of succinate and histidine. In another part, the expression of the genes involved in magnetosome synthesis based on RT-qPCR analysis revealed a tight regulation of the biomineralization process, depending on the availability of iron and oxygen concentration. Our findings highlight the existence of an indirect link between magnetosome biosynthesis and the general iron metabolism in QH-2. The development of a new culture device has increased the growth rate of QH-2 by a factor of five compared to the traditional incubation using flasks. In the future, this tool could also be used to grow other microorganisms that have specific low but constant O2-requirements, and should facilitate the isolation and the development of new microaerophilic microbial models.
|
Page generated in 0.0378 seconds