• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 19
  • 9
  • 1
  • Tagged with
  • 28
  • 28
  • 10
  • 10
  • 9
  • 9
  • 9
  • 9
  • 8
  • 8
  • 8
  • 7
  • 6
  • 6
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

PRISE EN COMPTE DE L'HETEROGENEITE DES SURFACES CONTINENTALES DANS LA MODELISATION HYDROLOGIQUE SPATIALISEE. APPLICATION SUR LE HAUT-BASSIN DE LA SAONE

Dehotin, Judicaël 20 December 2007 (has links) (PDF)
La prise en compte de l'hétérogénéité spatiale des bassins versants est nécessaire pour répondre aux divers enjeux liés à la gestion des ressources en eaux, tant au niveau quantitatif que qualitatif. Les modèles hydrologiques spatialisés permettent de prendre en compte l'hétérogénéité des surfaces continentales et des données d'entrée dans la modélisation du cycle de l'eau. La revue bibliographique réalisée dans la première partie a permis d'aborder différents aspects de la problématique de la prise en compte de l'hétérogénéité spatiale dans les modèles hydrologiques. Cette revue a débouché sur la proposition d'une méthode de découpage spatiale suivant trois niveaux emboîtés, de manière à adapter la description de l'hétérogénité spatiale des bassins versants à la question posée. Le premier niveau consiste en un découpage en sous-bassins (REWs) organisés autour du réseau hydrographique. Le second niveau de discrétisation (hydro-paysages) permet de décrire l'hétérogénéité spatiale des REWs. Nous avons proposé un cadre méthodologique pour le découpage en hydro-paysages. Le troisième niveau permet d'obtenir les mailles finales de la modélisation après redécoupage éventuel des hydro-paysages en fonction de contraintes numériques. Un exemple sur le Haut-bassin de la Saône permet d'illustrer l'ensemble de la démarche. La méthodologie proposée est associée à une modélisation flexible permettant d'adapter le découpage spatial à l'échelle des données disponibles et à l'échelle des processus hydrologiques à modéliser. Dans la deuxième partie de la thèse, nous avons présenté les outils utilisés pour réaliser des modélisations hydrologiques ‘à la carte', basés sur la plate-forme de modélisation LIQUID qui a servi de support à notre travail. Afin de prendre en compte dans la modélisation, les mailles non-structurées issues du découpage spatial proposé, nous avons développé un modèle de simulation des tranferts latéraux dans la zone saturée. Il résout l'équation de Boussinesq 2D sur un maillage irrégulier mais conforme. Différents tests ont été réalisés pour valider le modèle. Nous avons enfin abordé, sur quelques exemples simples, la problématique du couplage de différents modules en partant de ce module saturé et en étudiant le couplage avec les écoulements dans la rivière et la zone non saturée.
22

Conception et Analyse de Schémas Distribuant le Résidu d'Ordre Très Élevé. Application à la Mécanique des Fluides.

Larat, Adam 06 November 2009 (has links) (PDF)
La simulation numérique est aujourd'hui un outils majeur dans la conception des objets aérodynamiques, que ce soit dans l'aéronautique, l'automobile, l'industrie navale, etc... Un des défis majeurs pour repousser les limites des codes de simulation est d'améliorer leur précision, tout en utilisant une quantité fixe de ressources (puissance et/ou temps de calcul). Cet objectif peut être atteint par deux approches différentes, soit en construisant une discrétisation fournissant sur un maillage donné une solution d'ordre très élevé, soit en construisant un schéma compact et massivement parallélisable, de manière à minimiser le temps de calcul en distribuant le problème sur un grand nombre de processeurs. Dans cette thèse, nous tentons de rassembler ces deux approches par le développement et l'implémentation de Schéma Distribuant le Résidu (RDS) d'ordre très élevé et de compacité maximale. Ce manuscrit commence par un rappel des principaux résultats mathématiques concernant les Lois de Conservation hyperboliques (CLs). Le but de cette première partie est de mettre en évidence les propriétés des solutions analytiques que nous cherchons à approcher, de manière à injecter ces propriétés dans celles de la solution discrète recherchée. Nous décrivons ensuite les trois étapes principales de la construction d'un schéma RD d'ordre très élevé : \begin{itemize} \item la représentation polynomiale d'ordre très élevé de la solution sur des polygones et des polyèdres; \item la description de méthodes distribuant le résidu de faible ordre, compactes et conservatives, consistantes avec une représentation polynomiale des données de très haut degré. Parmi elles, une attention particulière est donnée à la plus simple, issue d'une généralisation du schéma de Lax-Friedrichs (LxF); \item la mise en place d'une procédure préservant la positivité qui transforme tout schéma stable et linéaire, en un schéma non linéaire d'ordre très élevé, capturant les chocs de manière non oscillante. \end{itemize} Dans le manuscrit, nous montrons que les schémas obtenus par cette procédure sont consistants avec la CL considérée, qu'ils sont stables en norme $\L^{\infty}$ et qu'ils ont la bonne erreur de troncature. Même si tous ces développements théoriques ne sont démontrés que dans le cas de CL scalaires, des remarques au sujet des problèmes vectoriels sont faites dès que cela est possible. Malheureusement, lorsqu'on considère le schéma LxF, le problème algébrique non linéaire associé à la recherche de la solution stationnaire est en général mal posé. En particulier, on observe l'apparition de modes parasites de haute fréquence dans les régions de faible gradient. Ceux-ci sont éliminés grâce à un terme supplémentaire de stabilisation dont les effets et l'évaluation numérique sont précisément détaillés. Enfin, nous nous intéressons à une discrétisation correcte des conditions limites pour le schéma d'ordre élevé proposé. Cette théorie est ensuite illustrée sur des cas test scalaires bidimensionnels simples. Afin de montrer la généralité de notre approche, des maillages composés uniquement de triangles et des maillages hybrides, composés de triangles et de quadrangles, sont utilisés. Les résultats obtenus par ces tests confirment ce qui est attendu par la théorie et mettent en avant certains avantages des maillages hybrides. Nous considérons ensuite des solutions bidimensionnelles des équations d'Euler de la dynamique des gaz. Les résultats sont assez bons, mais on perd les pentes de convergence attendues dès que des conditions limite de paroi sont utilisées. Ce problème nécessite encore d'être étudié. Nous présentons alors l'implémentation parallèle du schéma. Celle-ci est analysée et illustrée à travers des cas test tridimensionnel de grande taille. Du fait de la relative nouveauté et de la complexité des problèmes tridimensionels, seuls des remarques qualitatives sont faites pour ces cas test : le comportement global semble être bon, mais plus de travail est encore nécessaire pour définir les propriétés du schémas en trois dimensions. Enfin, nous présentons une extension possible du schéma aux équations de Navier-Stokes dans laquelle les termes visqueux sont traités par une formulation de type Galerkin. La consistance de cette formulation avec les équations de Navier-Stokes est démontrée et quelques remarques au sujet de la précision du schéma sont soulevées. La méthode est validé sur une couche limite de Blasius pour laquelle nous obtenons des résultats satisfaisants. Ce travail offre une meilleure compréhension des propriétés générales des schémas RD d'ordre très élevé et soulève de nouvelles questions pour des améliorations futures. Ces améliorations devrait faire des schémas RD une alternative attractive aux discrétisations classiques FV ou ENO/WENO, aussi bien qu'aux schémas Galerkin Discontinu d'ordre très élevé, de plus en plus populaires.
23

Adaptation de maillages pour des schémas numériques d'ordre très élevé

Mbinky, Estelle 20 December 2013 (has links) (PDF)
L'adaptation de maillages est un processus itératif qui consiste à changer localement la taille et l'orientation du maillage en fonction du comportement de la solution physique étudiée. Les méthodes d'adaptation de maillages ont prouvé qu'elles pouvaient être extrêmement efficaces en réduisant significativement la taille des maillages pour une précision donnée et en atteignant rapidement une convergence asymptotique d'ordre 2 pour des problèmes contenant des singularités lorsqu'elles sont couplées à des méthodes numériques d'ordre élevé. Dans les techniques d'adaptation de maillages basées sur les métriques, deux approches ont été proposées: les méthodes multi-échelles basées sur un contrôle de l'erreur d'interpolation en norme Lp et les méthodes ciblées à une fonctionnelle qui contrôle l'erreur d'approximation sur une fonctionnelle d'intérêt via l'utilisation de l'état adjoint. Cependant, avec l'émergence de méthodes numériques d'ordre très élevé telles que la méthode de Galerkin discontinue, il devient nécessaire de prendre en compte l'ordre du schéma numérique dans le processus d'adaptation de maillages. Il est à noter que l'adaptation de maillages devient encore plus cruciale pour de tels schémas car ils ne convergent qu'à l'ordre 1 dans les singularités de l'écoulement. Par conséquent, le raffinement du maillage au niveau des singularités de la solution doit être d'autant plus important que l'ordre de la méthode est élevé. L'objectif de cette thèse sera d'étendre les résultats numériques et théoriques obtenus dans le cas de l'adaptation pour des solutions linéaires par morceaux à l'adaptation pour des solutions d'ordre élevé polynomiales par morceaux. Ces solutions sont représentées sur le maillage par des éléments finis de Lagrange d'ordre k ≥ 2. Cette thèse portera sur la modélisation de l'erreur d'interpolation locale, polynôme homogène de degré k ≥ 3 dans le formalisme du maillage continu. Or, les méthodes d'adaptation de maillages basées sur les métriques nécessitent que le modèle d'erreur soit une forme quadratique, laquelle fait apparaître intrinsèquement un espace métrique. Pour pouvoir exhiber un tel espace, il est nécessaire de décomposer le polynôme homogène et de l'approcher par une forme quadratique à la puissance k/2. Cette modélisation permet ainsi de révéler un champ de métriques indispensable pour communiquer avec le générateur de maillages. En deux et trois dimensions, des méthodes de décomposition de tenseurs telles que la décomposition de Sylvester nous permettront de décomposer la fonction exacte d'erreur puis d'en déduire le modèle d'erreur quadratique. Ce modèle d'erreur local est ensuite utilisé pour contrôler globalement l'erreur en norme Lp et le maillage optimal est obtenu en minimisant cette erreur. Dans cette thèse, on s'attachera à démontrer la convergence à l'ordre k de la méthode d'adaptation de maillages pour des fonctions analytiques et pour des simulations numériques utilisant des solveurs d'ordre k ≥ 3.
24

Conception et validation d'algorithmes de remaillage parallèles à mémoire distribuée basés sur un remailleur séquentiel

Lachat, Cédric 13 December 2013 (has links) (PDF)
L'objectif de cette thèse était de proposer, puis de valider expérimentalement, un ensemble de méthodes algorithmiques permettant le remaillage parallèle de maillages distribués, en s'appuyant sur une méthode séquentielle de remaillage préexistante. Cet objectif a été atteint par étapes : définition de structures de données et de schémas de communication adaptés aux maillages distribués, permettant le déplacement à moindre coût des interfaces entre sous-domaines sur les processeurs d'une architecture à mémoire distribuée ; utilisation d'algorithmes de répartition dynamique de la charge adaptés aux techniques parallèles de remaillage ; conception d'algorithmes parallèles permettant de scinder le problème global de remaillage parallèle en plusieurs sous-tâches séquentielles, susceptibles de s'exécuter concurremment sur les processeurs de la machine parallèle. Ces contributions ont été mises en oeuvre au sein de la bibliothèque parallèle PaMPA, en s'appuyant sur les briques logicielles MMG3D (remaillage séquentiel de maillages tétraédriques) et PT-Scotch (repartitionnement parallèle de graphes). La bibliothèque PaMPA offre ainsi les fonctionnalités suivantes : communication transparente entre processeurs voisins des valeurs portées par les noeuds, les éléments, etc. ;remaillage, selon des critères fournis par l'utilisateur, de portions du maillage distribué, en offrant une qualité constante, que les éléments à remailler soient portés par un unique processeur ou bien répartis sur plusieurs d'entre eux ; répartition et redistribution de la charge des maillages pour préserver l'efficacité des simulations après remaillage.
25

Conception et analyse de schémas d'ordre très élevé distribuant le résidu : application à la mécanique des fluides

Larat, Adam 06 November 2009 (has links)
La simulation numérique est aujourd'hui un outils majeur dans la conception des objets aérodynamiques, que ce soit dans l'aéronautique, l'automobile, l'industrie navale, etc... Un des défis majeurs pour repousser les limites des codes de simulation est d'améliorer leur précision, tout en utilisant une quantité fixe de ressources (puissance et/ou temps de calcul). Cet objectif peut être atteint par deux approches différentes, soit en construisant une discrétisation fournissant sur un maillage donné une solution d'ordre très élevé, soit en construisant un schéma compact et massivement parallèlisable, de manière à minimiser le temps de calcul en distribuant le problème sur un grand nombre de processeurs. Dans cette thèse, nous tentons de rassembler ces deux approches par le développement et l'implémentation de Schéma Distribuant le Résidu (RDS) d'ordre très élevé et de compacité maximale. Ce manuscrit commence par un rappel des principaux résultats mathématiques concernant les Lois de Conservation hyperboliques (CLs). Le but de cette première partie est de mettre en évidence les propriétés des solutions analytiques que nous cherchons à approcher, de manière à injecter ces propriétés dans celles de la solution discrète recherchée. Nous décrivons ensuite les trois étapes principales de la construction d'un schéma RD d'ordre très élevé : - la représentation polynomiale d'ordre très élevé de la solution sur des polygones et des polyèdres; - la description de méthodes distribuant le résidu de faible ordre, compactes et conservatives, consistantes avec une représentation polynomiale des données de très haut degré. Parmi elles, une attention particulière est donnée à la plus simple, issue d'une généralisation du schéma de Lax-Friedrichs (\LxF); - la mise en place d'une procédure préservant la positivité qui transforme tout schéma stable et linéaire, en un schéma non linéaire d'ordre très élevé, capturant les chocs de manière non oscillante. Dans le manuscrit, nous montrons que les schémas obtenus par cette procédure sont consistants avec la CL considérée, qu'ils sont stables en norme $\L^{\infty}$ et qu'ils ont la bonne erreur de troncature. Même si tous ces développements théoriques ne sont démontrés que dans le cas de CLs scalaires, des remarques au sujet des problèmes vectoriels sont faites dès que cela est possible. Malheureusement, lorsqu'on considère le schéma \LxF, le problème algébrique non linéaire associé à la recherche de la solution stationnaire est en général mal posé. En particulier, on observe l'apparition de modes parasites de haute fréquence dans les régions de faible gradient. Ceux-ci sont éliminés grâce à un terme supplémentaire de stabilisation dont les effets et l'évaluation numérique sont précisément détaillés. Enfin, nous nous intéressons à une discrétisation correcte des conditions limites pour le schéma d'ordre élevé proposé. Cette théorie est ensuite illustrée sur des cas test scalaires bidimensionnels simples. Afin de montrer la généralité de notre approche, des maillages composés uniquement de triangles et des maillages hybrides, composés de triangles et de quandrangles, sont utilisés. Les résultats obtenus par ces tests confirment ce qui est attendu par la théorie et mettent en avant certains avantages des maillages hybrides. Nous considérons ensuite des solutions bidimensionnelles des équations d'Euler de la dynamique des gaz. Les résultats sont assez bons, mais on perd les pentes de convergence attendues dès que des conditions limite de paroi sont utilisées. Ce problème nécessite encore d'être étudié. Nous présentons alors l'implémentation parallèle du schéma. Celle-ci est analysée et illustrée à travers des cas test tridimensionnel de grande taille. / Numerical simulations are nowadays a major tool in aerodynamic design in aeronautic, automotive, naval industry etc... One of the main challenges to push further the limits of the simulation codes is to increase their accuracy within a fixed set of resources (computational power and/or time). Two possible approaches to deal with this issue are either to contruct discretizations yielding, on a given mesh, very high order accurate solutions, or to construct compact, massively parallelizable schemes to minimize the computational time by means of a high performance parallel implementation. In this thesis, we try to combine both approaches by investigating the contruction and implementation of very high order Residual Distribution Schemes (RDS) with the most possible compact stencil. The manuscript starts with a review of the mathematical theory of hyperbolic Conservation Laws (CLs). The aim of this initial part is to highlight the properties of the analytical solutions we are trying to approximate, in order to be able to link these properties with the ones of the sought discrete solutions. Next, we describe the three main steps toward the construction of a very high order RDS: - The definition of higher order polynomial representations of the solution over polygons and polyhedra; - The design of low order compact conservative RD schemes consistent with a given (high degree) polynomial representation. Among these, particular accest is put on the simplest, given by a generalization of the Lax-Friedrich's (\LxF) scheme; - The design of a positivity preserving nonlinear transformation, mapping first-order linear schemes onto nonlinear very high order schemes. In the manuscript, we show formally that the schemes obtained following this procedure are consistent with the initial CL, that they are stable in $L^{\infty}$ norm, and that they have the proper truncation error. Even though all the theoretical developments are carried out for scalar CLs, remarks on the extension to systems are given whenever possible. Unortunately, when employing the first order \LxF scheme as a basis for the construction of the nonlinear discretization, the final nonlinear algebraic equation is not well-posed in general. In particular, for smoothly varying solutions one observes the appearance of high frequency spurious modes. In order to kill these modes, a streamline dissipation term is added to the scheme. The analytical implications of this modifications, as well as its practical computation, are thouroughly studied. Lastly, we focus on a correct discretization of the boundary conditions for the very high order RDS proposed. The theory is then extensively verified on a variety of scalar two dimensional test cases. Both triangular, and hybrid triangular-quadrilateral meshes are used to show the generality of the approach. The results obtained in these tests confirm all the theoretical expectations in terms of accuracy and stability and underline some advantages of the hybrid grids. Next, we consider solutions of the two dimensional Euler equations of gas dynamics. The results obtained are quite satisfactory and yet, we are not able to obtain the desired convergence rates on problems involving solid wall boundaries. Further investigation of this problem is under way. We then discuss the parallel implementation of the schemes, and analyze and illustrate the performance of this implementation on large three dimensional problems. Due to the preliminary character and the complexity of these three dimensional problems, a rather qualitative discussion is made for these tests cases: the overall behavior seems to be the correct one, but more work is necessary to assess the properties of the schemes in three dimensions.
26

Méthodes numériques pour des équations elliptiques et paraboliques non linéaires. Application à des problèmes d'écoulement en milieux poreux et fracturés

Vohralik, Martin 09 December 2004 (has links) (PDF)
Les travaux de cette thèse portent sur des méthodes numériques pour la discrétisation d'équations aux dérivées partielles elliptiques et paraboliques de convection-réaction-diffusion non linéaires. Nous analysons ces méthodes et nous les appliquons à la simulation effective de l'écoulement et du transport de contaminants en milieux poreux et fracturés. Au chapitre 1, nous proposons un schéma permettant une discrétisation efficace, robuste, conservative et stable des équations de convection-réaction-diffusion non linéaires paraboliques dégénérées sur des maillages non structurés en dimensions deux ou trois d'espace. Nous discrétisons le terme de diffusion, qui contient en général un tenseur de diffusion inhomogène et anisotrope, par la méthode des éléments finis non conformes ou mixtes-hybrides et les autres termes par la méthode des volumes finis. La partie essentielle du chapitre est ensuite consacrée à montrer l'existence et l'unicité d'une solution discrète et sa convergence vers une solution faible du problème continu. La méthode de démonstration permet en particulier d'éviter des hypothèses restrictives sur le maillage souvent présentes dans la littérature. Nous proposons finalement une variante de ce schéma pour des maillages qui ne se raccordent pas, couplant cette fois la méthode des volumes finis avec celle des éléments finis conformes, et nous l'appliquons à la simulation du transport de contaminants en milieux poreux. Au chapitre 2, nous présentons une démonstration constructive des inégalités de Poincaré-Friedrichs discrètes pour une classe d'approximations non conformes de l'espace de Sobolev H1, indiquons les valeurs optimales des constantes dans ces inégalités et montrons l'inégalité de Friedrichs discrète pour des domaines bornés dans une direction uniquement. Ces résultats sont importants dans l'analyse de méthodes numériques non conformes, comme les méthodes d'éléments finis non conformes ou de Galerkin discontinu. Au chapitre 3, nous montrons que la méthode des éléments finis mixtes de Raviart-Thomas de plus bas degré pour des problèmes elliptiques en dimension deux ou trois d'espace est équivalente à un schéma de volumes finis à plusieurs points. Après avoir étudié ce schéma, nous l'appliquons à la discrétisation d'équations de convection-réaction-diffusion paraboliques non linéaires. Cette approche permet de réduire le temps de calcul de la méthode des éléments finis mixtes, tout en conservant sa très grande précision, ce qui est confirmé par les tests numériques. Enfin, au chapitre 4, nous proposons une version de la méthode des éléments finis mixtes de Raviart-Thomas de plus bas degré pour la résolution de problèmes elliptiques sur un système de polygones bidimensionnels placés dans l'espace tridimensionnel, démontrons qu'elle est bien posée et étudions sa relation avec la méthode des éléments finis non conformes. Ces résultats sont finalement appliqués à la simulation de l'écoulement de l'eau souterraine dans un système de polygones représentant un réseau de fractures perturbant un massif rocheux.
27

Développement d’un schéma aux volumes finis centré lagrangien pour la résolution 3D des équations de l’hydrodynamique et de l’hyperélasticité / Development of a 3D cell-centered Lagrangian scheme for the numerical modeling of the gas dynamics and hyperelasticity systems

Georges, Gabriel 19 September 2016 (has links)
La Physique des Hautes Densités d’Énergies (HEDP) est caractérisée par desécoulements multi-matériaux fortement compressibles. Le domaine contenant l’écoulementsubit de grandes variations de taille et est le siège d’ondes de chocs et dedétente intenses. La représentation Lagrangienne est bien adaptée à la descriptionde ce type d’écoulements. Elle permet en effet une très bonne description deschocs ainsi qu’un suivit naturel des interfaces multi-matériaux et des surfaces libres.En particulier, les schémas Volumes Finis centrés Lagrangiens GLACE (GodunovtypeLAgrangian scheme Conservative for total Energy) et EUCCLHYD (ExplicitUnstructured Cell-Centered Lagrangian HYDrodynamics) ont prouvé leur efficacitépour la modélisation des équations de la dynamique des gaz ainsi que de l’élastoplasticité.Le travail de cette thèse s’inscrit dans la continuité des travaux de Maireet Nkonga [JCP, 2009] pour la modélisation de l’hydrodynamique et des travauxde Kluth et Després [JCP, 2010] pour l’hyperelasticité. Plus précisément, cettethèse propose le développement de méthodes robustes et précises pour l’extension3D du schéma EUCCLHYD avec une extension d’ordre deux basée sur les méthodesMUSCL (Monotonic Upstream-centered Scheme for Conservation Laws) et GRP(Generalized Riemann Problem). Une attention particulière est portée sur la préservationdes symétries et la monotonie des solutions. La robustesse et la précision duschéma seront validées sur de nombreux cas tests Lagrangiens dont l’extension 3Dest particulièrement difficile. / High Energy Density Physics (HEDP) flows are multi-material flows characterizedby strong shock waves and large changes in the domain shape due to rarefactionwaves. Numerical schemes based on the Lagrangian formalism are good candidatesto model this kind of flows since the computational grid follows the fluid motion.This provides accurate results around the shocks as well as a natural tracking ofmulti-material interfaces and free-surfaces. In particular, cell-centered Finite VolumeLagrangian schemes such as GLACE (Godunov-type LAgrangian scheme Conservativefor total Energy) and EUCCLHYD (Explicit Unstructured Cell-CenteredLagrangian HYDrodynamics) provide good results on both the modeling of gas dynamicsand elastic-plastic equations. The work produced during this PhD thesisis in continuity with the work of Maire and Nkonga [JCP, 2009] for the hydrodynamicpart and the work of Kluth and Després [JCP, 2010] for the hyperelasticitypart. More precisely, the aim of this thesis is to develop robust and accurate methodsfor the 3D extension of the EUCCLHYD scheme with a second-order extensionbased on MUSCL (Monotonic Upstream-centered Scheme for Conservation Laws)and GRP (Generalized Riemann Problem) procedures. A particular care is taken onthe preservation of symmetries and the monotonicity of the solutions. The schemerobustness and accuracy are assessed on numerous Lagrangian test cases for whichthe 3D extensions are very challenging.
28

Méthodes numériques de type Volumes Finis sur maillages non structurés pour la résolution de la thermique anisotrope et des équations de Navier-Stokes compressibles

Jacq, Pascal 09 July 2014 (has links) (PDF)
Lors de la rentrée atmosphérique nous sommes amenés à modéliser trois phénomènes physiques différents. Tout d'abord, l'écoulement autour du véhicule entrant dans l'atmosphère est hypersonique, il est caractérisé par la présence d'un choc fort et provoque un fort échauffement du véhicule. Nous modélisons l'écoulement par les équations de Navier-Stokes compressibles et l'échauffement du véhicule au moyen de la thermique anisotrope. De plus le véhicule est protégé par un bouclier thermique siège de réactions chimiques que l'on nomme communément ablation.<br /><br /> Dans le premier chapitre de cette thèse nous présentons le schéma numérique de diffusion CCLAD (Cell-Centered LAgrangian Diffusion) que nous utilisons pour résoudre la thermique anisotrope. Nous présentons l'extension en trois dimensions de ce schéma ainsi que sa parallélisation.<br /> Nous continuons le manuscrit en abordant l'extension de ce schéma à une équation de diffusion tensorielle. Cette équation est obtenue en supprimant les termes convectifs de l'équation de quantité de mouvement des équations de Navier-Stokes. Nous verrons qu'une pénalisation doit être introduite afin de pouvoir inverser la loi constitutive et ainsi appliquer la méthodologie CCLAD. Nous présentons les propriétés numériques du schéma ainsi obtenu et effectuons des validations numériques.<br /> Dans le dernier chapitre, nous présentons un schéma numérique de type Volumes Finis permettant de résoudre les équations de Navier-Stokes sur des maillages non-structurés obtenu en réutilisant les deux schémas de diffusion présentés précédemment.

Page generated in 0.0519 seconds