• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • Tagged with
  • 5
  • 5
  • 5
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Estudo de métodos multigrid para solução de equações do tipo Poisson em malhas esféricas geodésicas icosaédricas / Study of multigrid methods for solving Poisson-type equations in geodesic icosahedral spherical grids

Marline Ilha da Silva 15 December 2014 (has links)
O objetivo deste trabalho é o estudo de métodos multigrid para a solução de equações elípticas na esfera, discretizadas em malhas esféricas geodésicas icosaédricas. Malhas esféricas geradas a partir de sólidos platônicos receberam crescente atenção ao longo da última década, por serem razoavelmente uniformes e não apresentarem concentração de pontos em torno dos pólos como as tradicionais malhas latitude-longitude. Em especial, as malhas geodésicas icosaédricas (geradas a partir de um icosaedro inscrito na esfera com suas faces projetadas na superfície) têm sido adotadas no desenvolvimento de diversos modelos atmosféricos. Nestes é comum a necessidade de resolução de equações do tipo Poisson como parte do método de integração, motivando o nosso trabalho. Adotamos uma discretização do operador de Laplace baseada em volumes finitos. Para tal escrevemos o laplaciano como o divergente do gradiente. O divergente é discretizado com base nos fluxos nos pontos médios das arestas das células computacionais (com o auxílio do teorema da divergência de Gauss) e no uso de diferenças centradas para aproximar as derivadas nesses pontos médios. Validamos a discretização para o operador de Laplace resolvendo uma equação de Poisson através dos métodos iterativos de Jacobi e Gauss-Seidel. Estes sabidamente não são eficientes computacionalmente, devido ao grande e crescente número de iterações necessárias para atingir a convergência ao refinar a malha. Uma alternativa muito eficiente para a resolução de equações elípticas é a métodologia multigrid. Investigamos alguns métodos multigrid propostos na literatura para a solução destas equações na malha esférica geodésica icosaédrica. A partir desse estudo, utilizando também como referência a Análise Local de Fourier para a equação de Poisson em malhas hexagonais uniformes, como uma aproximação para malhas geodésicas icosaédricas, escolhemos um algoritmo multigrid para implementação. Testamos algumas opções para as componentes do esquema multigrid. Obtivemos taxas de convergência muito boas com V(1,1) ciclos com relaxação por Gauss-Seidel, restrição full weighting e interpolação linear. / This work is dedicated to the numerical solution of elliptic equations on the sphere, discretized on geodesic icosahedral grids. Spherical meshes generated from projections of platonic solids received considerable attention in the last decade, once they are almost isotropic and do not present a concentration of grid points around the poles, as traditional latitude-longitude grids. In particular, the geodesic icosahedral spherical grids have been adopted in the development of several atmospheric models. In these models, the necessity to solve Poisson type equations is very common, providing a motivation for our present work. We have employed a discretization of the Laplace operator based on finite volumes. We write the Laplacian as the divergent of the gradient operator and use Gauss theorem to derive the discretization of the operator. We integrate the fluxes along the cell borders and approximate them through finite-differences. We first validated the discretization solving Poisson\'s equation with a simple (and very innefficient) Jacobi-Relaxation and Gauss-Seidel. We then investigated the use of multigrid type schemes for the solution of this equation. We have analysed some schemes proposed in the literature, also using an idealized Local Fourier Analysis on hexagonal (planar) grids to estimate the behaviour of the schemes on the icosaedral grids. We have implemented and tested a multigrid method, comparing the performance with different relaxation schemes and transfer operators. We have obtained a very efficient method employing V(1,1) cycles with Gauss-Seidel relaxation, and full-weighting and linear interpolation as transfer-operators.
2

Estudo de métodos multigrid para solução de equações do tipo Poisson em malhas esféricas geodésicas icosaédricas / Study of multigrid methods for solving Poisson-type equations in geodesic icosahedral spherical grids

Silva, Marline Ilha da 15 December 2014 (has links)
O objetivo deste trabalho é o estudo de métodos multigrid para a solução de equações elípticas na esfera, discretizadas em malhas esféricas geodésicas icosaédricas. Malhas esféricas geradas a partir de sólidos platônicos receberam crescente atenção ao longo da última década, por serem razoavelmente uniformes e não apresentarem concentração de pontos em torno dos pólos como as tradicionais malhas latitude-longitude. Em especial, as malhas geodésicas icosaédricas (geradas a partir de um icosaedro inscrito na esfera com suas faces projetadas na superfície) têm sido adotadas no desenvolvimento de diversos modelos atmosféricos. Nestes é comum a necessidade de resolução de equações do tipo Poisson como parte do método de integração, motivando o nosso trabalho. Adotamos uma discretização do operador de Laplace baseada em volumes finitos. Para tal escrevemos o laplaciano como o divergente do gradiente. O divergente é discretizado com base nos fluxos nos pontos médios das arestas das células computacionais (com o auxílio do teorema da divergência de Gauss) e no uso de diferenças centradas para aproximar as derivadas nesses pontos médios. Validamos a discretização para o operador de Laplace resolvendo uma equação de Poisson através dos métodos iterativos de Jacobi e Gauss-Seidel. Estes sabidamente não são eficientes computacionalmente, devido ao grande e crescente número de iterações necessárias para atingir a convergência ao refinar a malha. Uma alternativa muito eficiente para a resolução de equações elípticas é a métodologia multigrid. Investigamos alguns métodos multigrid propostos na literatura para a solução destas equações na malha esférica geodésica icosaédrica. A partir desse estudo, utilizando também como referência a Análise Local de Fourier para a equação de Poisson em malhas hexagonais uniformes, como uma aproximação para malhas geodésicas icosaédricas, escolhemos um algoritmo multigrid para implementação. Testamos algumas opções para as componentes do esquema multigrid. Obtivemos taxas de convergência muito boas com V(1,1) ciclos com relaxação por Gauss-Seidel, restrição full weighting e interpolação linear. / This work is dedicated to the numerical solution of elliptic equations on the sphere, discretized on geodesic icosahedral grids. Spherical meshes generated from projections of platonic solids received considerable attention in the last decade, once they are almost isotropic and do not present a concentration of grid points around the poles, as traditional latitude-longitude grids. In particular, the geodesic icosahedral spherical grids have been adopted in the development of several atmospheric models. In these models, the necessity to solve Poisson type equations is very common, providing a motivation for our present work. We have employed a discretization of the Laplace operator based on finite volumes. We write the Laplacian as the divergent of the gradient operator and use Gauss theorem to derive the discretization of the operator. We integrate the fluxes along the cell borders and approximate them through finite-differences. We first validated the discretization solving Poisson\'s equation with a simple (and very innefficient) Jacobi-Relaxation and Gauss-Seidel. We then investigated the use of multigrid type schemes for the solution of this equation. We have analysed some schemes proposed in the literature, also using an idealized Local Fourier Analysis on hexagonal (planar) grids to estimate the behaviour of the schemes on the icosaedral grids. We have implemented and tested a multigrid method, comparing the performance with different relaxation schemes and transfer operators. We have obtained a very efficient method employing V(1,1) cycles with Gauss-Seidel relaxation, and full-weighting and linear interpolation as transfer-operators.
3

Um método robusto de volumes finitos de alta ordem para advecção em malhas esféricas geodésicas / A robust high-order finite volume method for advection on geodesic spherical grids

Granjeiro, Jeferson Brambatti 28 June 2019 (has links)
A esfera é comumente usada como domínio computacional para representar o planeta Terra. Dessa forma, é possível modelar diversos fenômenos físicos, como a previsão numérica do tempo. A discretização pode ser feita de formas distintas, mas devido a uma crescente necessidade de eficiência computacional, as malhas geodésicas têm ganhado a atenção da comunidade científica. Dentre as quais, por serem mais isotrópicas em relação às malhas latitude/longitude, destacam-se as malhas icosaédricas. A qualidade dos modelos de previsão do tempo é fortemente influenciada pela precisão da solução da equação de advecção (ou transporte), pois, é necessário avaliar o transporte de diversas substâncias presentes na atmosfera. Nesse contexto, pesquisadores têm se interessado em desenvolver métodos de alta ordem na esfera para melhorar a qualidade da solução do transporte escalar. Apesar de existirem alguns modelos numéricos de alta ordem que usam malhas icosaédricas, não há consenso sobre as metodologias e os tipos de malhas a serem utilizadas. O objetivo deste trabalho foi estudar os métodos disponíveis na literatura e propor um novo método de alta ordem na esfera, baseado nos trabalhos de Ollivier-Gooch e colaboradores. O método de volumes finitos de alta ordem foi validado com testes de interpolação, integração e discretização do divergente. Por fim, foram utilizadas várias funções testes para a advecção. Os resultados foram comparados com os da literatura para malhas icosaédricas com distintas otimizações. Os testes incluem funções suaves, com descontinuidades e testes de deformações na distribuição do campo transportado, que são fundamentais no desenvolvimento de modelos atmosféricos globais. Os resultados numéricos mostram que o método proposto, que será denominado por FV-OLG, foi capaz de obter alta ordem de precisão e verificou-se que as taxas de erro são pouco influenciadas por distorções de malha. Foi feito um teste adicional para avaliar o transporte de uma colina de gaussiana na malha icosaédrica com refinamento local. Os resultados obtidos demonstram que as taxas de convergências são as mesmas obtidas em malhas com distintas otimizações, demonstrando ser um método robusto a ser explorado em modelos atmosféricos globais. / The sphere is commonly used as a computational domain to represent the planet Earth. In this way, it is possible to model several physical phenomena, such as the numerical weather forecast. Discretization can be done in different ways, but due to an increasing need for computational efficiency, geodesic meshes have gained the attention of the scientific community. These are more isotropic in relation to the latitude / longitude meshes, among which, the icosahedral meshes stand out. The quality of weather forecast models is strongly influenced by the accuracy of the solution of the advection (or transport) equation, since it is necessary to evaluate the transport of various substances present in the atmosphere. In this context, researchers have been interested in developing high-order methods on the sphere to improve the quality of the scalar transport solution. Although there are some high order numerical models that use icosahedral meshes, there is no consensus on the methodologies and types of meshes to be used. The objective of this work was to study the methods available in the literature and to propose a new high order method in the sphere, based on the works of Ollivier-Gooch et al. The finite-order finite-volume method was validated with inter- polation, integration and discretization tests of the divergent. For this purpose, several tests were used for the advection and the results were compared with those from the literature for icosahedral meshes with different optimizations. The tests include smooth functions, with discontinuities and tests of deformations in the distribution of the transported field, which are fundamental in the development of global atmospheric models. The numerical results show that the proposed method, which will be called FV-OLG, was able to obtain a high order of accuracy and verified that the error rates are little influenced by mesh distortion. An additional test was carried out to evaluate the transport of a Gaussian hill in the icosahedral grid with local refinement. The results show that the convergence rates are the same as those obtained in meshes with different optimizations, demonstrating that it is a robust method to be used in global atmospheric models.
4

Análise de discretizações e interpolações em malhas icosaédricas e aplicações em modelos de transporte semi-lagrangianos / Analysis of discretizations and interpolations on icosahedral grids and applications to semi-Lagrangian transport models

Peixoto, Pedro da Silva 12 June 2013 (has links)
A esfera é utilizada como domínio computacional na modelagem de diversos fenômenos físicos, como em previsão numérica do tempo. Sua discretização pode ser feita de diversas formas, sendo comum o uso de malha regulares em latitude/longitude. Recentemente, também para melhor uso de computação paralela, há uma tendência ao uso de malhas mais isotrópicas, dentre as quais a icosaédrica. Apesar de já existirem modelos atmosféricos que usam malhas icosaédricas, não há consenso sobre as metodologias mais adequadas a esse tipo de malha. Nos propusemos, portanto, a estudar em detalhe diversos fatores envolvidos no desenvolvimento de modelos atmosféricos globais usando malhas geodésicas icosaédricas. A discretização usual por volumes finitos para divergente de um campo vetorial utiliza como base o Teorema da Divergência e a regra do ponto médio nas arestas das células computacionais. A distribuição do erro obtida com esse método apresenta uma forte relação com características geométricas da malha. Definimos o conceito geométrico de alinhamento de células computacionais e desenvolvemos uma teoria que serve de base para explicar interferências de malha na discretização usual do divergente. Destacamos os impactos de certas relações de alinhamento das células na ordem da discretização do método. A teoria desenvolvida se aplica a qualquer malha geodésica e também pode ser usada para os operadores rotacional e laplaciano. Investigamos diversos métodos de interpolação na esfera adequados a malhas icosaédricas, e abordamos o problema de interpolação e reconstrução vetorial na esfera em malhas deslocadas. Usamos métodos alternativos de reconstrução vetorial aos usados na literatura, em particular, desenvolvemos um método híbrido de baixo custo e boa precisão. Por fim, utilizamos as técnicas de discretização, interpolação e reconstrução vetorial analisadas em um método semi-lagrangiano para o transporte na esfera em malhas geodésicas icosaédricas. Realizamos experimentos computacionais de transporte, incluindo testes de deformações na distribuição do campo transportado, que mostraram a adequação da metodologia para uso em modelos atmosféricos globais. A plataforma computacional desenvolvida nesta tese, incluindo geração de malhas, interpolações, reconstruções vetoriais e um modelo de transporte, fornece uma base para o futuro desenvolvimento de um modelo atmosférico global em malhas icosaédricas. / Spherical domains are used to model many physical phenomena, as, for instance, global numerical weather prediction. The sphere can be discretized in several ways, as for example a regular latitude-longitude grid. Recently, also motivated by a better use of parallel computers, more isotropic grids have been adopted in atmospheric global circulation models. Among those, the icosahedral grids are promising. Which kind of discretization methods and interpolation schemes are the best to use on those grids are still a research subject. Discretization of the sphere may be done in many ways and, recently, to make better use of computational resources, researchers are adopting more isotropic grids, such as the icosahedral one. In this thesis, we investigate in detail the numerical methodology to be used in atmospheric models on icosahedral grids. The usual finite volume method of discretization of the divergence of a vector field is based on the divergence theorem and makes use of the midpoint rule for integration on the edges of computational cells. The error distribution obtained with this method usually presents a strong correlation with some characteristics of the icosahedral grid. We introduced the concept of cell alignment and developed a theory which explains the grid imprinting patterns observed with the usual divergence discretization. We show how grid alignment impacts in the order of the divergence discretization. The theory developed applies to any geodesic grid and can also be used for other operators such as curl and Laplacian. Several interpolation schemes suitable for icosahedral grids were analysed, including the vector interpolation and reconstruction problem on staggered grids. We considered alternative vector reconstruction methods, in particular, we developed a hybrid low cost and good precision method. Finally, employing the discretizations and interpolations previously analysed, we developed a semi-Lagrangian transport method for geodesic icosahedral grids. Several tests were carried out, including deformational test cases, which demonstrated that the methodology is suitable to use in global atmospheric models. The computational platform developed in this thesis, including mesh generation, interpolation, vector reconstruction and the transport model, provides a basis for future development of global atmospheric models on icosahedral grids.
5

Análise de discretizações e interpolações em malhas icosaédricas e aplicações em modelos de transporte semi-lagrangianos / Analysis of discretizations and interpolations on icosahedral grids and applications to semi-Lagrangian transport models

Pedro da Silva Peixoto 12 June 2013 (has links)
A esfera é utilizada como domínio computacional na modelagem de diversos fenômenos físicos, como em previsão numérica do tempo. Sua discretização pode ser feita de diversas formas, sendo comum o uso de malha regulares em latitude/longitude. Recentemente, também para melhor uso de computação paralela, há uma tendência ao uso de malhas mais isotrópicas, dentre as quais a icosaédrica. Apesar de já existirem modelos atmosféricos que usam malhas icosaédricas, não há consenso sobre as metodologias mais adequadas a esse tipo de malha. Nos propusemos, portanto, a estudar em detalhe diversos fatores envolvidos no desenvolvimento de modelos atmosféricos globais usando malhas geodésicas icosaédricas. A discretização usual por volumes finitos para divergente de um campo vetorial utiliza como base o Teorema da Divergência e a regra do ponto médio nas arestas das células computacionais. A distribuição do erro obtida com esse método apresenta uma forte relação com características geométricas da malha. Definimos o conceito geométrico de alinhamento de células computacionais e desenvolvemos uma teoria que serve de base para explicar interferências de malha na discretização usual do divergente. Destacamos os impactos de certas relações de alinhamento das células na ordem da discretização do método. A teoria desenvolvida se aplica a qualquer malha geodésica e também pode ser usada para os operadores rotacional e laplaciano. Investigamos diversos métodos de interpolação na esfera adequados a malhas icosaédricas, e abordamos o problema de interpolação e reconstrução vetorial na esfera em malhas deslocadas. Usamos métodos alternativos de reconstrução vetorial aos usados na literatura, em particular, desenvolvemos um método híbrido de baixo custo e boa precisão. Por fim, utilizamos as técnicas de discretização, interpolação e reconstrução vetorial analisadas em um método semi-lagrangiano para o transporte na esfera em malhas geodésicas icosaédricas. Realizamos experimentos computacionais de transporte, incluindo testes de deformações na distribuição do campo transportado, que mostraram a adequação da metodologia para uso em modelos atmosféricos globais. A plataforma computacional desenvolvida nesta tese, incluindo geração de malhas, interpolações, reconstruções vetoriais e um modelo de transporte, fornece uma base para o futuro desenvolvimento de um modelo atmosférico global em malhas icosaédricas. / Spherical domains are used to model many physical phenomena, as, for instance, global numerical weather prediction. The sphere can be discretized in several ways, as for example a regular latitude-longitude grid. Recently, also motivated by a better use of parallel computers, more isotropic grids have been adopted in atmospheric global circulation models. Among those, the icosahedral grids are promising. Which kind of discretization methods and interpolation schemes are the best to use on those grids are still a research subject. Discretization of the sphere may be done in many ways and, recently, to make better use of computational resources, researchers are adopting more isotropic grids, such as the icosahedral one. In this thesis, we investigate in detail the numerical methodology to be used in atmospheric models on icosahedral grids. The usual finite volume method of discretization of the divergence of a vector field is based on the divergence theorem and makes use of the midpoint rule for integration on the edges of computational cells. The error distribution obtained with this method usually presents a strong correlation with some characteristics of the icosahedral grid. We introduced the concept of cell alignment and developed a theory which explains the grid imprinting patterns observed with the usual divergence discretization. We show how grid alignment impacts in the order of the divergence discretization. The theory developed applies to any geodesic grid and can also be used for other operators such as curl and Laplacian. Several interpolation schemes suitable for icosahedral grids were analysed, including the vector interpolation and reconstruction problem on staggered grids. We considered alternative vector reconstruction methods, in particular, we developed a hybrid low cost and good precision method. Finally, employing the discretizations and interpolations previously analysed, we developed a semi-Lagrangian transport method for geodesic icosahedral grids. Several tests were carried out, including deformational test cases, which demonstrated that the methodology is suitable to use in global atmospheric models. The computational platform developed in this thesis, including mesh generation, interpolation, vector reconstruction and the transport model, provides a basis for future development of global atmospheric models on icosahedral grids.

Page generated in 0.041 seconds