Spelling suggestions: "subject:"mapas autoorganizáveis"" "subject:"mapas organizáveis""
51 |
Análise dos atropelamentos de mamíferos em uma rodovia no estado de São Paulo utilizando Self-Organizing Maps. / Using Self-Organizing Maps to analyse wildlife-vehicle collisions on a highway in São Paulo state.Tsuda, Larissa Sayuri 05 July 2018 (has links)
A construção e ampliação de rodovias gera impactos significativos ao meio ambiente. Os principais impactos ao meio biótico são a supressão de vegetação, redução da riqueza e abundância de espécies de fauna como decorrência da fragmentação de habitats e aumento dos riscos de atropelamento de animais silvestres e domésticos. O objetivo geral do trabalho foi identificar padrões espaciais nos atropelamentos de fauna silvestre por espécie (nome popular) utilizando ferramentas de análise espacial e machine learning. Especificamente, buscou-se compreender a relação entre atropelamentos de animais silvestres e variáveis que representam características de uso e cobertura do solo e caracterização da rodovia, tais como formação florestal, corpos d\'água, silvicultura, áreas edificadas, velocidade máxima permitida, volume de tráfego, entre outras. Os atropelamentos de fauna silvestre foram analisados por espécie atropelada, a fim de identificar os padrões espaciais dos atropelamentos específicos para cada espécie. As ferramentas de análise espacial empregadas foram a Função K - para determinar o padrão de distribuição dos registros de atropelamento de fauna, o Estimador de Densidade de Kernel - para gerar estimativas de densidade de pontos sobre a rodovia, a Análise de Hotspots - para identificar os trechos mais críticos de atropelamento de fauna e, por fim, o Self-Organizing Maps (SOM), um tipo de rede neural artificial, que reorganiza amostras de dados n-dimensionais de acordo com a similaridade entre elas. Os resultados das análises de padrões pontuais foram importantes para entender que os pontos de atropelamento possuem padrões de distribuição espacial que variam por espécie. Os eventos ocorrem espacialmente agrupados e não estão homogeneamente distribuídos ao longo da rodovia. De maneira geral, os animais apresentam trechos de maior intensidade de atropelamento em locais distintos. O SOM permitiu analisar as relações entre múltiplas variáveis, lineares e não-lineares, tais como são os dados ecológicos, e encontrar padrões espaciais distintos por espécie. A maior parte dos animais foi atropelada próxima de fragmentos florestais e de corpos d\'água, e distante de cultivo de cana-de-açúcar, silvicultura e área edificada. Porém, uma parte considerável das mortes de animais dos tipos com maior número de atropelamentos ocorreu em áreas com paisagem diversificada, incluindo alta densidade de drenagem, fragmentos florestais, silvicultura e áreas edificadas. / The construction and expansion of roads cause significant impacts on the environment. The main potential impacts to biotic environment are vegetation suppression, reduction of the abundance and richness of species due to forest fragmentation and increase of animal (domestic and wildlife) vehicle collisions. The general objective of this work was to identify spatial patterns in wildlife-vehicle collisions individually per species by using spatial analysis and machine learning. Specifically, the relationship between wildlife-vehicle collisions and variables that represent land use and road characterization features - such as forests, water bodies, silviculture, sugarcane fields, built environment, speed limit and traffic volume - was investigated. The wildlife-vehicle collisions were analyzed per species, in order to identify the spatial patterns for each species separately. The spatial analysis tools used in this study were K-Function - to determine the distribution pattern of roadkill, Kernel Density Estimator (KDE) - to identify the location and intensity of hotspots and hotzones. Self-Organizing Maps (SOM), an artificial neural network (ANN), was selected to reorganize the multi-dimensional data according to the similarity between them. The results of the spatial pattern analysis were important to perceive that the point data pattern varies between species. The events occur spatially clustered and are not uniformly distributed along the highway. In general, wildlife-vehicle collsions have their hotzones in different locations. SOM was able to analyze the relationship between multiple variables, linear and non-linear, such as ecological data, and established distinct spatial patterns per each species. Most of the wildlife was run over close to forest area and water bodies, and distant from sugarcane, silviculture and built environments. But a considerable part of the wildlife-vehicle collisions occurred in areas with diverse landscape, including high density of water bodies, silviculture and built environments.
|
52 |
Aplicação de mapas auto-organizáveis na classificação de aberrações cromossômicas utilizando imagens de cromossomos humanos submetidos à radiação ionizante / Application of self-organizing maps for the classification of chromosomal aberrations using images of human chromosomes subjected to ionizing radiationKelly de Paula Cunha 15 April 2015 (has links)
O presente trabalho é resultado da colaboração de pesquisadores do Centro de Engenharia Nuclear (CEN) e de pesquisadores do Centro de Biotecnologia (CB), ambos pertencentes ao IPEN, para o desenvolvimento de uma metodologia que visa auxiliar os profissionais citogeneticistas fornecendo uma ferramenta que automatize parte da rotina necessária para a avaliação qualitativa e quantitativa de danos biológicos em termos de aberração cromossômica. A técnica citogenética, sobre a qual esta ferramenta é desenvolvida, é a técnica de aberrações cromossômicas. Nela, são realizadas preparações citológicas de linfócitos de sangue periférico para que metáfases sejam analisadas e fotografadas ao microscópio e, com base na morfologia dos cromossomos, anomalias sejam investigadas. Quando esta tarefa é realizada manualmente, os cromossomos são analisados visualmente um a um pelo profissional citogeneticista, logo, trata-se de um processo minucioso em virtude da variação geral na aparência do cromossomo, do seu tamanho pequeno e do grande número de cromossomos por célula. Para um diagnóstico confiável, é necessário que várias células sejam analisadas, tornando-se uma tarefa repetitiva e demorada. Neste contexto, foi proposto o uso dos mapas auto-organizáveis para o reconhecimento automático de padrões morfológicos referentes às imagens de cromossomos humanos. Para isso, foi desenvolvido um método de extração de características por meio do qual é possível classificar os cromossomos em: dicêntricos, anéis, acrocêntricos, submetacêntricos e metacêntricos, com acerto de 93,4 % em relação ao diagnóstico dado por um profissional citogeneticista. / This work is a joint collaboration between Nuclear Energy Research Institute (IPEN), Nuclear Engineering Center and Biotechnology Center to develop a methodology aiming to assist cytogenetic professionals by providing a tool to automate part of the required routine to perform qualitative and quantitative evaluation of biological damage in terms of chromosomal aberration. The cytogenetic technique upon which this tool was developed, is the chromosome aberrations technique, in which cytological preparations of peripheral blood lymphocyte metaphases are performed to be analyzed and photographed under a microscope in order to investigating chromosomal aberration. Performed manually, the chromosomes are analyzed visually one by one by a cytogenetic professional, so it is a painstaking process due to the great deal of variation in the appearance of each chromosome, their small sizes and not to mention the high density of chromosomes per cell. In order to obtain a reliable diagnosis it is necessary that many cells be analyzed, which makes this a repetitive and time consuming process. In this context, the use of self-organizing maps for the automatic recognition of patterns relating to morphological pictures of human chromosomes has been proposed. For this, we developed a feature extraction method by which is possible to classify chromosomes in: dicentrics, ring-shaped, acrocentric, submetacentric and metacentric with 93.4% accuracy compared to diagnostic given by a professional cytogeneticist.
|
53 |
Análise dos atropelamentos de mamíferos em uma rodovia no estado de São Paulo utilizando Self-Organizing Maps. / Using Self-Organizing Maps to analyse wildlife-vehicle collisions on a highway in São Paulo state.Larissa Sayuri Tsuda 05 July 2018 (has links)
A construção e ampliação de rodovias gera impactos significativos ao meio ambiente. Os principais impactos ao meio biótico são a supressão de vegetação, redução da riqueza e abundância de espécies de fauna como decorrência da fragmentação de habitats e aumento dos riscos de atropelamento de animais silvestres e domésticos. O objetivo geral do trabalho foi identificar padrões espaciais nos atropelamentos de fauna silvestre por espécie (nome popular) utilizando ferramentas de análise espacial e machine learning. Especificamente, buscou-se compreender a relação entre atropelamentos de animais silvestres e variáveis que representam características de uso e cobertura do solo e caracterização da rodovia, tais como formação florestal, corpos d\'água, silvicultura, áreas edificadas, velocidade máxima permitida, volume de tráfego, entre outras. Os atropelamentos de fauna silvestre foram analisados por espécie atropelada, a fim de identificar os padrões espaciais dos atropelamentos específicos para cada espécie. As ferramentas de análise espacial empregadas foram a Função K - para determinar o padrão de distribuição dos registros de atropelamento de fauna, o Estimador de Densidade de Kernel - para gerar estimativas de densidade de pontos sobre a rodovia, a Análise de Hotspots - para identificar os trechos mais críticos de atropelamento de fauna e, por fim, o Self-Organizing Maps (SOM), um tipo de rede neural artificial, que reorganiza amostras de dados n-dimensionais de acordo com a similaridade entre elas. Os resultados das análises de padrões pontuais foram importantes para entender que os pontos de atropelamento possuem padrões de distribuição espacial que variam por espécie. Os eventos ocorrem espacialmente agrupados e não estão homogeneamente distribuídos ao longo da rodovia. De maneira geral, os animais apresentam trechos de maior intensidade de atropelamento em locais distintos. O SOM permitiu analisar as relações entre múltiplas variáveis, lineares e não-lineares, tais como são os dados ecológicos, e encontrar padrões espaciais distintos por espécie. A maior parte dos animais foi atropelada próxima de fragmentos florestais e de corpos d\'água, e distante de cultivo de cana-de-açúcar, silvicultura e área edificada. Porém, uma parte considerável das mortes de animais dos tipos com maior número de atropelamentos ocorreu em áreas com paisagem diversificada, incluindo alta densidade de drenagem, fragmentos florestais, silvicultura e áreas edificadas. / The construction and expansion of roads cause significant impacts on the environment. The main potential impacts to biotic environment are vegetation suppression, reduction of the abundance and richness of species due to forest fragmentation and increase of animal (domestic and wildlife) vehicle collisions. The general objective of this work was to identify spatial patterns in wildlife-vehicle collisions individually per species by using spatial analysis and machine learning. Specifically, the relationship between wildlife-vehicle collisions and variables that represent land use and road characterization features - such as forests, water bodies, silviculture, sugarcane fields, built environment, speed limit and traffic volume - was investigated. The wildlife-vehicle collisions were analyzed per species, in order to identify the spatial patterns for each species separately. The spatial analysis tools used in this study were K-Function - to determine the distribution pattern of roadkill, Kernel Density Estimator (KDE) - to identify the location and intensity of hotspots and hotzones. Self-Organizing Maps (SOM), an artificial neural network (ANN), was selected to reorganize the multi-dimensional data according to the similarity between them. The results of the spatial pattern analysis were important to perceive that the point data pattern varies between species. The events occur spatially clustered and are not uniformly distributed along the highway. In general, wildlife-vehicle collsions have their hotzones in different locations. SOM was able to analyze the relationship between multiple variables, linear and non-linear, such as ecological data, and established distinct spatial patterns per each species. Most of the wildlife was run over close to forest area and water bodies, and distant from sugarcane, silviculture and built environments. But a considerable part of the wildlife-vehicle collisions occurred in areas with diverse landscape, including high density of water bodies, silviculture and built environments.
|
54 |
Análise de Sinais Eletrocardiográficos Atriais Utilizando Componentes Principais e Mapas Auto-Organizáveis. / Atrial Eletrocardiographics Signals Analysis Using Principal Components and Self-Organizing Maps.Coutinho, Paulo Silva 21 November 2008 (has links)
A análise de sinais provenientes de um eletrocardiograma (ECG) pode ser de grande importância para avaliação do comportamento cardíaco de um paciente. Os sinais de ECG possuem características específicas de acordo com os tipos de arritmias e sua classificação depende da morfologia do sinal. Neste trabalho é considerada uma abordagem híbrida utilizando análise de componentes principais (PCA) e mapas auto-organizáveis (SOM) para classificação de agrupamentos provenientes de arritmias como a taquicardia sinusal e, principalmente, fibrilação atrial. Nesse sentido, O PCA é utilizado como um pré-processador buscando suprimir sinais de atividades ventriculares, de maneira que a atividade atrial presente no ECG seja evidenciada sob a forma das ondas f. A Rede Neural SOM, é usada na classificação dos padrões de fibrilação atrial e seus agrupamentos / A análise de sinais provenientes de um eletrocardiograma (ECG) pode ser de grande importância para avaliação do comportamento cardíaco de um paciente. Os sinais de ECG possuem características específicas de acordo com os tipos de arritmias e sua classificação depende da morfologia do sinal. Neste trabalho é considerada uma abordagem híbrida utilizando análise de componentes principais (PCA) e mapas auto-organizáveis (SOM) para classificação de agrupamentos provenientes de arritmias como a taquicardia sinusal e, principalmente, fibrilação atrial. Nesse sentido, O PCA é utilizado como um pré-processador buscando suprimir sinais de atividades ventriculares, de maneira que a atividade atrial presente no ECG seja evidenciada sob a forma das ondas f. A Rede Neural SOM, é usada na classificação dos padrões de fibrilação atrial e seus agrupamentos
|
55 |
O uso de redes neurais auto-organizáveis na análise da transferência de conhecimentos prosódico em aprendizes brasileiros de língua inglesa / The use of self-organizing artificial neural networks for the analysis of prosodic knowledge in Brazilian learner of EnglishSilva, Ana Cristina Cunha da January 2010 (has links)
SILVA, Ana Cristina Cunha da. O uso de redes neurais auto-organizáveis na análise da transferência de conhecimentos prosódico em aprendizes brasileiros de língua inglesa. 2010, 201f. Tese (Doutorado em Linguística) – Universidade Federal do Ceará, Departamento de Letras Vernáculas, Programa de Pós-graduação em Linguística, Fortaleza-CE, 2010. / Submitted by nazareno mesquita (nazagon36@yahoo.com.br) on 2012-06-28T13:08:58Z
No. of bitstreams: 1
2010_tese_ACCSilva.pdf: 2172197 bytes, checksum: 036ba2cdc331410f0516a0ba2abe520d (MD5) / Approved for entry into archive by Maria Josineide Góis(josineide@ufc.br) on 2013-10-10T13:22:45Z (GMT) No. of bitstreams: 1
2010_tese_ACCSilva.pdf: 2172197 bytes, checksum: 036ba2cdc331410f0516a0ba2abe520d (MD5) / Made available in DSpace on 2013-10-10T13:22:45Z (GMT). No. of bitstreams: 1
2010_tese_ACCSilva.pdf: 2172197 bytes, checksum: 036ba2cdc331410f0516a0ba2abe520d (MD5)
Previous issue date: 2010 / The objective of this dissertation was to investigate how the prosodic knowledge is organized in an early stage of L2 acquisition in Brazilian learners of English with the help of a connectionist neural network. The approach proposed in this research is first, to quantify the utterances of L2 learners in the form of LPC coefficients and other linguistic/phonetics features that can represent the phenomenon studied here (Transfer of the prosodic knowledge from Portuguese to English). This process is called speech feature extraction, an important step in the connectionist approach to speech processing. Second, since certain features of the lexical item or sentence produced by each learner are determined, these data are entered into the neural network to analyze the statistical properties (regularities) of the set of speakers as a whole. Third, visualization tools are used to analyze how the network organizes speakers and what information is most relevant to this process of group formation (e.g. proficiency level, a certain characteristic or property of speech, among others). The network is known as Self-Organizing Map (Self-Organizing Map, SOM). The SOM organizes speakers for similarity degree in well-defined groups (clusters). Application of SOM in this context is therefore innovative. The SOM network is implemented in Matlab environment using the SOMtoolbox package, which is a set of programming routines developed by the research group in Finland, also the inventors of the SOM. The simulation results indicate that SOM might be used more frequently to assess the degree of distance that a group of learners is to the group of native speakers. Thus, a neural network might be used as a tool in the context of determining the level of foreign language proficiency. / O objetivo desta tese foi investigar como o conhecimento prosódico está organizado em um estágio inicial de aquisição de L2 em aprendizes brasileiros de inglês com a ajuda de uma rede neural conexionista. A abordagem proposta neste trabalho consiste primeiramente em "quantificar" as elocuções dos aprendizes de L2 na forma de coeficientes LPC e outras características linguísticas/fonéticas que possam representar o fenômeno aqui estudado (Transferência do Conhecimento Prosódico do Português para o inglês). A este processo dá-se o nome de "extração de características" da fala (feature extraction), uma importante etapa na abordagem conexionista do processamento da fala. Em segundo lugar, uma vez determinadas as características do item lexical ou da frase produzida por cada aprendiz, são inseridos esses dados na rede neural a fim de analisar as propriedades (regularidades) estatísticas do conjunto de falantes como um todo. Em terceiro, utiliza-se ferramentas de visualização para analisar como a rede organiza os falantes e quais informações são mais relevantes para este processo de formação de grupos (e.g. nível de proficiência, uma certa característica ou propriedade da fala, entre outros). A rede utilizada é conhecida como Mapa Auto-Organizável (Self-Organizing Map, SOM). A rede SOM organiza os falantes por grau de similaridade em grupos bem definidos (clusters). A aplicação da rede SOM neste contexto é, portanto, inovadora. A rede SOM é implementada no ambiente Matlab usando o pacote Som toolbox, que é um conjunto de rotinas de programação desenvolvidas pelo grupo de pesquisa da Finlândia, também inventores da rede SOM. Os resultados das simulações apontam que a rede SOM pode vir a ser usada mais frequentemente para avaliar o grau de distância a que um grupo de aprendizes está do grupo de falantes nativos. Dessa forma, uma rede neural pode vir a ser aplicada como ferramenta no contexto de determinação de nível de proficiência em língua estrangeira.
|
56 |
Redes neurais e algoritmos genéticos no estudo quimiossistemático da família Asteraceae / Neural Network and Genetic Algorithms in the Chemosystematic study of Asteraceae FamilyMauro Vicentini Correia 16 March 2010 (has links)
No presente trabalho duas metodologias da área de inteligência artificial (Redes Neurais e Algoritmos Genéticos) foram utilizadas para realizar um estudo Quimiossistemático da família Asteraceae. A família Asteraceae é uma das maiores famílias entre as Angiospermas, conta com aproximadamente 24.000 espécies. As espécies da família produzem grande diversidade de metabólitos secundários, entre os quais merecem destaque os terpenóides, poliacetilenos, flavonóides e cumarinas. Para um melhor entendimento da diversidade química da família construiu-se um Banco de Dados com as ocorrências de doze classes de metabólitos (monoterpenos, sesquiterpenos, sesquiterpenos lactonizados, diterpenos, triterpenos, cumarinas, flavonóides, poliacetilenos, benzofuranos, benzopiranos, acetofenonas e fenilpropanóides) produzidos pelas espécies da família. A partir desse banco três diferentes estudos foram realizados. No primeiro estudo, utilizando os mapas auto-organizáveis de Kohonen e o banco de dados químico classificado segundo duas das mais recentes filogenias da família foi possível realizar com sucesso separações de tribos e gêneros da família Asteraceae. Também foi possível indicar que a informação química concorda mais com a filogenia de Funk (Funk et al. 2009) do que com a filogenia de Bremer (Bremer 1994, 1996). No estudo seguinte, onde se objetivou a criação de modelos de previsão dos números de ocorrências das doze classes de metabólitos, utilizando o perceptron de múltiplas camadas com algoritmo de retropropagação de erro, o resultado foi insatisfatório. Apesar de em algumas classes de metabólitos a fase de treino da rede apresentar resultados satisfatórios, a fase de teste mostrou que os modelos criados não são capazes de realizar previsão para dados aos quais eles não foram submetidos na fase de treino, e portanto não são modelos adequados para realizar previsões. Finalmente, o terceiro estudo consistiu na criação de modelos de regressão linear utilizando como método de seleção de variáveis os algoritmos genéticos. Nesse estudo foi possível indicar que os monoterpenos e os sesquiterpenos são bastante relacionados biossinteticamente, também foi possível indicar que existem relações biossintéticas entre monoterpenos e diterpenos e entre sesquiterpenos e triterpenos / In this study two methods of artificial intelligence (neural network and genetic algorithms) were used to work out a Chemosystematic study of the Asteraceae family. The family Asteraceae is one of the largest families among the Angiosperms, having about 24,000 species. The species of the family produce a large diversity of secondary metabolites, and some worth mentioning are the terpenoids, polyacetylenes, flavonoids and coumarins. For a better understanding of the chemical diversity of the family a database was built up with the occurrences of twelve classes of metabolites (monoterpenes, sesquiterpenes, lactonizadossesquiterpenes, diterpenes, triterpenes, coumarins, flavonoids, polyacetylenes, Benzofurans, benzopyrans, acetophenones and phenylpropanoids) produced by species of the family. From this database three different studies were conducted. In the first study, using the Kohonen self-organized map and the chemical data classified according to two of the most recent phylogenies of the family, it was possible to successfully separatethe tribes and genera of the Asteraceae family. It was also possible to indicate that the chemical information agrees with the phylogeny of Funk (Funk et al. 2009) than with the phylogeny of Bremer (Bremer 1994, 1996). In the next study, which aims at creating models to predict the number of occurrences of the twelve classes of metabolites using multi-layer perceptron with backpropagation algorithm error, the result was found unsatisfactory. Although in some classes of metabolites the training phase of the network has satisfactory results, the test phase showed that the models created are not able to make prevision for data to which they were submitted in the training phase and thus are not suitable models for predictions. Finally, the third study was the creation of linear regression models using a genetic algorithm method of variable selection. This study could indicate that the monoterpenes and sesquiterpenes are closely related biosynthetically, and was also possible to indicate that there are biosynthetic relations between monoterpenes and diterpenes and between sesquiterpenes and triterpenes
|
57 |
An authomatic method for construction of multi-classifier systems based on the combination of selection and fusionLima, Tiago Pessoa Ferreira de 26 February 2013 (has links)
Submitted by João Arthur Martins (joao.arthur@ufpe.br) on 2015-03-12T17:38:41Z
No. of bitstreams: 2
Dissertaçao Tiago de Lima.pdf: 1469834 bytes, checksum: 95a0326778b3d0f98bd35a7449d8b92f (MD5)
license_rdf: 1232 bytes, checksum: 66e71c371cc565284e70f40736c94386 (MD5) / Approved for entry into archive by Daniella Sodre (daniella.sodre@ufpe.br) on 2015-03-13T14:23:38Z (GMT) No. of bitstreams: 2
Dissertaçao Tiago de Lima.pdf: 1469834 bytes, checksum: 95a0326778b3d0f98bd35a7449d8b92f (MD5)
license_rdf: 1232 bytes, checksum: 66e71c371cc565284e70f40736c94386 (MD5) / Made available in DSpace on 2015-03-13T14:23:38Z (GMT). No. of bitstreams: 2
Dissertaçao Tiago de Lima.pdf: 1469834 bytes, checksum: 95a0326778b3d0f98bd35a7449d8b92f (MD5)
license_rdf: 1232 bytes, checksum: 66e71c371cc565284e70f40736c94386 (MD5)
Previous issue date: 2013-02-26 / In this dissertation, we present a methodology that aims the automatic construction of multi-classifiers systems based on the combination of selection and fusion. The presented method initially finds an optimum number of clusters for training data set and subsequently determines an ensemble for each cluster found. For model evaluation, the testing data set are submitted to clustering techniques and the nearest cluster to data input will emit a supervised response through its associated ensemble. Self-organizing maps were used in the clustering phase and multilayer perceptrons were used in the classification phase. Adaptive differential evolution has been used in this work in order to optimize the parameters and performance of the different techniques used in the classification and clustering phases. The proposed method, called SFJADE - Selection and Fusion (SF) via Adaptive Differential Evolution (JADE), has been tested on data compression of signals generated by artificial nose sensors and well-known classification problems, including cancer, card, diabetes, glass, heart, horse, soybean and thyroid. The experimental results have shown that the SFJADE method has a better performance than some literature methods while significantly outperforming most of the methods commonly used to construct Multi-Classifier Systems. / Nesta dissertação, nós apresentamos uma metodologia que almeja a construção automática de sistemas de múltiplos classificadores baseados em uma combinação de seleção e fusão. O método apresentado inicialmente encontra um número ótimo de grupos a partir do conjunto de treinamento e subsequentemente determina um comitê para cada grupo encontrado. Para avaliação do modelo, os dados de teste são submetidos à técnica de agrupamento e o grupo mais próximo do dado de entrada irá emitir uma resposta supervisionada por meio de seu comitê associado. Mapas Auto Organizáveis foi usado na fase de agrupamento e Perceptrons de múltiplas camadas na fase de classificação. Evolução Diferencial Adaptativa foi utilizada neste trabalho a fim de otimizar os parâmetros e desempenho das diferentes técnicas utilizadas nas fases de classificação e agrupamento de dados. O método proposto, chamado SFJADE – Selection and Fusion (SF) via Adaptive Differential Evolution (JADE), foi testado em dados gerados para sensores de um nariz artificial e problemas de referência em classificação de padrões, que são: cancer, card, diabetes, glass, heart, heartc e horse. Os resultados experimentais mostraram que SFJADE possui um melhor desempenho que alguns métodos da literatura, além de superar a maioria dos métodos geralmente usados para a construção de sistemas de múltiplos classificadores.
|
58 |
Mapas auto-organizáveis com topologioa variante no tempo para categorização em subespaços em dados de alta dimensionalidade e vistas múltiplasANTONINO, Victor Oliveira 16 August 2016 (has links)
Submitted by Fabio Sobreira Campos da Costa (fabio.sobreira@ufpe.br) on 2017-04-24T15:04:03Z
No. of bitstreams: 2
license_rdf: 1232 bytes, checksum: 66e71c371cc565284e70f40736c94386 (MD5)
mapas-auto-organizaveis2.pdf: 2835656 bytes, checksum: 8836a86bd2cced9353cb25b53383b305 (MD5) / Made available in DSpace on 2017-04-24T15:04:03Z (GMT). No. of bitstreams: 2
license_rdf: 1232 bytes, checksum: 66e71c371cc565284e70f40736c94386 (MD5)
mapas-auto-organizaveis2.pdf: 2835656 bytes, checksum: 8836a86bd2cced9353cb25b53383b305 (MD5)
Previous issue date: 2016-08-16 / Métodos e algoritmos em aprendizado de máquina não supervisionado têm sido empregados em diversos problemas significativos. Uma explosão na disponibilidade de dados de várias fontes e modalidades está correlacionada com os avanços na obtenção, compressão, armazenamento, transferência e processamento de grandes quantidades de dados complexos com alta dimensionalidade, como imagens digitais, vídeos de vigilância e microarranjos de DNA. O agrupamento se torna difícil devido à crescente dispersão desses dados, bem como a dificuldade crescente em discriminar distâncias entre os pontos de dados. Este trabalho apresenta um algoritmo de agrupamento suave em subespaços baseado em um mapa auto-organizável (SOM) com estrutura variante no tempo, o que significa que o agrupamento dos dados pode ser alcançado sem qualquer conhecimento prévio, tais como o número de categorias ou a topologia dos padrões de entrada, nos quais ambos são determinados durante o processo de treinamento. O modelo também atribui diferentes pesos a diferentes dimensões, o que implica que cada dimensão contribui para o descobrimento dos aglomerados de dados. Para validar o modelo, diversos conjuntos de dados reais foram utilizados, considerando uma diversificada gama de contextos, tais como mineração de dados, expressão genética, agrupamento multivista e problemas de visão computacional. Os resultados são promissores e conseguem lidar com dados reais caracterizados pela alta dimensionalidade. / Unsupervised learning methods have been employed on many significant problems. A blast in
the availability of data from multiple sources and modalities is correlated with advancements in
how to obtain, compress, store, transfer, and process large amounts of complex high-dimensional
data, such as digital images, surveillance videos, and DNA microarrays. Clustering becomes
challenging due to the increasing sparsity of such data, as well as the increasing difficulty in
discriminating distances between data points. This work presents a soft subspace clustering
algorithm based on a self-organizing map (SOM) with time-variant structure, meaning that
clustering data can be achieved without any prior knowledge such as the number of categories or
input data topology, in which both are determined during the training process. The model also
assigns different weights to different dimensions, this implies that every dimension contributes to
uncover clusters. To validate the model, we used a number of real-world data sets, considering a
diverse range of contexts such as data mining, gene expression, multi-view and computer vision
problems. The promising results can handle real-world data characterized by high dimensionality.
|
59 |
Um método de classificação em grupos de informações visando sua segurançaTorres, José Antonio Corrales 05 March 2008 (has links)
Made available in DSpace on 2016-03-15T19:38:09Z (GMT). No. of bitstreams: 1
Jose Antonio Corrales Torres.pdf: 1028407 bytes, checksum: b5574af2fd8d98d1a9fe03ff29b6aa07 (MD5)
Previous issue date: 2008-03-05 / In the contemporary society, information and knowledge grew in importance and have become the most valuable assets, space and time are less relevant and more vulnerable due to the increasing mobile technology. New procedures and processes were created towards security. The information classification is the primary requirement to adjust rules and procedures, the protection level and cost. The current process is manual, restricted by the knowledge of few people and subject to imperfections. This study suggests a method to classify the information, regarding its confidentiality, using groups generated by an Artificial Neural Network. The development of this method was supported by studies of methodologies applied to information protection, to the technology and business risk management, classification methodologies and control structures. The implementation made use of a Neural Network, based on the Self-Organization Maps (SOM) of Kohonen, due to its heavy specialization on groups handling. The study case objective was the implementation and it considered the information from universities, due to their various properties (administrative, pedagogic and scientific research). The analysis of the results indicated the similarity among the elements that composed the groups generated by the training of the Neural Network, complemented by calculations using the original weights. The viability of the application of the considered method to an organization was confirmed. / Na sociedade contemporânea, a informação e o conhecimento assumiram a importância de representar os ativos de maior valor, num cenário em que o espaço e o tempo, devido à tecnologia voltada à mobilidade, perderam a relevância e tornaram-se mais vulneráveis. Surgiram novos procedimentos e mecanismos destinados à segurança. A classificação das informações é o requisito fundamental para direcionar as medidas, o nível de proteção e o custo. Atualmente o processo é manual, restrito ao entendimento de algumas pessoas e sujeito a imperfeições. Este estudo propõe um método para classificar as informações, quanto à sua confidencialidade, em grupos gerados por uma Rede Neural Artificial. O desenvolvimento deste método foi pautado por estudos em metodologias destinadas à segurança das informações, ao gerenciamento de risco de negócio e tecnológico, metodologias para classificação e estruturas de controle. A implementação usou a Rede Neural, baseada nos Mapas Auto-Organizáveis (SOM) de Kohonen, devido à sua acentuada especialização no tratamento de grupos. O estudo de caso objetivou a implementação e contemplou as informações das universidades, em razão da diversidade de suas propriedades (administrativa, pedagógica e pesquisa científica). A análise dos resultados obtidos permitiu observar a semelhança dos elementos que compõe os grupos gerados pelo treinamento da Rede Neural, complementado por cálculos que utilizam os pesos iniciais. Mostrou-se a viabilidade da aplicação do método proposto para uma organização.
|
60 |
Mapas auto-organizáveis na construção de recursos de aprendizagem adaptativos: uma aplicação no ensino de músicaFerreira, Fabiano Rodrigues 29 February 2008 (has links)
Made available in DSpace on 2016-04-18T21:39:46Z (GMT). No. of bitstreams: 3
Fabiano Rodrigues Ferreira1.pdf: 1311600 bytes, checksum: 0965dfbc230f89f36675c671139868c2 (MD5)
Fabiano Rodrigues Ferreira2.pdf: 3285153 bytes, checksum: a89026ec6080ef90e4d32d6b1d3ecf78 (MD5)
Fabiano Rodrigues Ferreira3.pdf: 3363149 bytes, checksum: 1aeb3cbfdd346437db3d3527f88d4d81 (MD5)
Previous issue date: 2008-02-29 / Fundo Mackenzie de Pesquisa / Brazilian educational scenario suffers from the lack of incentive to a musical apprenticeship that leads students to reflect about their own reality. Due to the actual hegemonic politics, educational processes, in general, are characterized by diminishing student s potential for reflection, in a society that priorizes a strict technicist teaching, as contemporary society is. As a result, students are often not able to stablish relationships between what was learned and their own lives. Thus, it is necessary to have some mechanisms that could help the adaptation to student s cultural context, leading to a meaningful ethnic learning. Learning objects concept can be understood as examples of technological resources that appear in a way to organize and structure digital educational data. Such concept, althought is a new paradigm into educational ambit, has been widely used on educational systems by constant & crescent deliver of learning objects by Internet. In this way, this work focuses an adaptive learning object architecture, applied to the learning process of Brazilian musical rhythms, as an example. Such objects are dynamically retrieved from repositories through techniques based on self-organizing maps. Objects are selected in order to create learning resources adequate to some desirable adaptivity factor, as previous knowledge, learning styles or cultural aspects. / O cenário educacional brasileiro sofre com a falta de incentivo a um aprendizado musical que realmente faça o educando refletir sobre sua realidade. Devido à política hegemônica atual, os processos educativos, em geral, estão imersos numa alienação descontextualizante e no assistencialismo. O poder de pensamento e reflexão do educando acaba diminuindo consideravelmente numa sociedade que preza mais pelo ensino puramente tecnicista do que pelo incentivo à reflexão, como é o caso da sociedade contemporânea. O resultado disso acaba sendo uma inorganicidade educacional que faz com que o aluno não faça relação daquilo que aprendeu com sua própria vida. Torna-se necessário, portanto, estabelecer mecanismos que auxiliem a adaptação ao contexto cultural do mesmo, levando a uma etnoaprendizagem significativa e contextualizada. Entendem-se os objetos de aprendizagem como exemplos de recursos tecnológicos que surgiram como forma de organizar e estruturar materiais educacionais digitais. Tal conceito, embora seja um paradigma novo no âmbito da educação tem sido amplamente utilizado nos sistemas educacionais atuais através da constante e crescente disponibilização dos mesmos pela Internet. Dessa forma, este trabalho enfoca uma arquitetura de objetos de aprendizagem digitais adaptativos com uma aplicação no processo de aprendizagem de ritmos musicais brasileiros,
como exemplo de utilização. Tais objetos são dinamicamente recuperados a partir de repositórios, através de técnicas baseadas em mapas auto-organizáveis. Objetos são selecionados de maneira a criar recursos de aprendizagem que sejam adequados a algum fator de adaptabilidade desejável para o contexto, como conhecimentos prévios, estilos de aprendizagem ou aspectos culturais.
|
Page generated in 0.0765 seconds