• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • Tagged with
  • 6
  • 6
  • 6
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Órbitas quirais, classes de conjugação e dinâmica holomórfica sem pontos críticos

Endler, Antônio January 2006 (has links)
Nesta Tese discutimos três problemas chave que estabelecem um número de conexões entre aspectos fundamentais e aplicações práticas em Dinâmica Não-Linear. No primeiro capítulo revisamos conceitos básicos e como simplificar e resolver de modo exato as equações de movimento de um difeomorfismo polinomial que exibe um cenário rico em complexidade, da integrabilidade ao caos dissipativo: o mapa de Hénono Apresentamos resultados exatos definindo todas as órbitas periódicas de períodos até 6 no limite Hamiltoniano do modelo para uma de não-linearidade representativa onde existe uma ferradura completa de Smale, quando todas órbitas possíveis são reais. Mostramos que é possível classificar as órbitas segundo as irracionalidades algébricas envolvidas nas soluções exatas, re-ordenando e mostrando inter-dependências dos rótulos normalmente derivados através da dinâmica simbólica. Nossas soluções exatas permitem-nos resolver de uma vez por todas o enigma do centro de massa orbital, que consiste na observação empírica, apresentada na literatura, da simplificação freqüente da soma das coordenadas dos pontos orbitais em simples números racionais. No segundo capítulo mostramos que, ainda no limite Hamiltoniano mas para valores arbitrários do parâmetro de não-linearidade, o conjunto das órbitas periódicas é formado por três classes de conjugação algébrica bem definidas. Mostramos que a classe das órbitas assimétricas é composto por pares de órbitas que exibem simetria quiral. Apesar de ser comum na literatura estudar-se preferencialmente apenas as órbitas simétricas, mostramos que as órbitas assimétricas são as que dominam por completo a estatística orbital à medida que o período cresce. Por exemplo, para período 20, computamos que 97.2% das 52377 órbitas existentes, consideradas até aqui como meramente assimétricas são, na verdade, pares de órbitas com simetria quiral. A Tese é concluida no terceiro capítulo, onde apresentamos um estudo numérico para verificar alguns aspectos dinâmicos que, devido à extensão dos cálculos, não podem ser decididos analiticamente como nos dois capítulos precedentes. Mais especificamente, estudamos a conexão entre os espaços de fase real e complexo de mapa de Hénon dissipativos, quando se mantém os parâmetros de controle no domínio real. Tal cenário nos permite encontrar dois resultados novos: (i) a existência de uma infinidade de órbitas periódicas que, apesar de existirem no plano complexo, são estáveis para valores reais dos parâmetros de controle, e (ii) que os pontos críticos, atores centrais hoje em dia da dinâmica holomórfica (i. e. analítica complexa), na verdade são totalmente não-essenciais. Isto porque, como demonstramos, a mesma fenomenologia da dinâmica holomórfica pode ser obtida num regime realístico onde sequer é possível definir-se pontos críticos. Em particular, mostramos como obter conjuntos mais gerais que o famoso conjunto de Mandelbrot sem envolver considerações de pontos críticos. / In this Thesis we discuss three key prablems that establish a number of connections between fundamental aspects and practical applications in Nonlinear Dynamics. In the first chapter we review basic concepts and how to simplify and exactly solve the equations of motion of a polynomial di.ffeomorphism which exhibits a full range of complexity, fram integrability to dissipative chaos: the Hénon map. We report exact results defining all periodic orbits with periods up to 6 in the Hamiltonian limit of the model for a representative nonlinearity supporting a full Smale horseshoe, when all possible orbits are real. We show that it is possible to classify the orbits according the algebraic irrationality involved in the exact solutions) re-ordering and making visible interdependencies of the labels normally derived via symbolic dynamics. Our exact solution allow us to solve for good the puzzle of the orbital center-of-mass. In the second chapter we show that, still in the Hamiltonian limit but for arbitrary values of the nonlinearity parameter) the set of periodic orbits is composed by three well-defined algebraic con,jugacy classes. We show that the class of asymmetrical orbits is composed by pairs of orbits exhibiting a chiral symmetry. Although in the literature it is common to study mainly symmetrical orbits) we show that it is the asymmetric orbits that completely dominate the orbital statistics when the period graws. For instance, for period 20 we computed that 97.2% of the 52377 existing orbits, considered thus far as being merely asymmetric orbits, are in fact pairs of orbits with chiral symmetry. The Thesis concludes in the third chapter, where we present a numerical study to verify some dynamical aspects that) due to the extension of the calculations) cannot be decided analytically as in the two preceding chapters. More specifically) we study the connection between the real and the complex phase-spaces of the dissipative Hénon map when maintaining the control parameters in the real domain. This scenario allows v.S to find two new results which are extremely surprising: (i) The existence of an infinity of periodic orbits which, albeit living in the complex plane) are stable for real values of the contral parameters) and (ii) That the critical point) key players nowadays in holomorphic (i. e. analytic complex) dynamics, in fact are totally non-essential. This because, as we show, the same phenomenology of holomorphic dynamics may be obtained in a realistic regime where it is not even possible to define critical points. In particular, we show how to obtain sets more general than the famous Mandelbrat set without considering critical points.
2

Órbitas quirais, classes de conjugação e dinâmica holomórfica sem pontos críticos

Endler, Antônio January 2006 (has links)
Nesta Tese discutimos três problemas chave que estabelecem um número de conexões entre aspectos fundamentais e aplicações práticas em Dinâmica Não-Linear. No primeiro capítulo revisamos conceitos básicos e como simplificar e resolver de modo exato as equações de movimento de um difeomorfismo polinomial que exibe um cenário rico em complexidade, da integrabilidade ao caos dissipativo: o mapa de Hénono Apresentamos resultados exatos definindo todas as órbitas periódicas de períodos até 6 no limite Hamiltoniano do modelo para uma de não-linearidade representativa onde existe uma ferradura completa de Smale, quando todas órbitas possíveis são reais. Mostramos que é possível classificar as órbitas segundo as irracionalidades algébricas envolvidas nas soluções exatas, re-ordenando e mostrando inter-dependências dos rótulos normalmente derivados através da dinâmica simbólica. Nossas soluções exatas permitem-nos resolver de uma vez por todas o enigma do centro de massa orbital, que consiste na observação empírica, apresentada na literatura, da simplificação freqüente da soma das coordenadas dos pontos orbitais em simples números racionais. No segundo capítulo mostramos que, ainda no limite Hamiltoniano mas para valores arbitrários do parâmetro de não-linearidade, o conjunto das órbitas periódicas é formado por três classes de conjugação algébrica bem definidas. Mostramos que a classe das órbitas assimétricas é composto por pares de órbitas que exibem simetria quiral. Apesar de ser comum na literatura estudar-se preferencialmente apenas as órbitas simétricas, mostramos que as órbitas assimétricas são as que dominam por completo a estatística orbital à medida que o período cresce. Por exemplo, para período 20, computamos que 97.2% das 52377 órbitas existentes, consideradas até aqui como meramente assimétricas são, na verdade, pares de órbitas com simetria quiral. A Tese é concluida no terceiro capítulo, onde apresentamos um estudo numérico para verificar alguns aspectos dinâmicos que, devido à extensão dos cálculos, não podem ser decididos analiticamente como nos dois capítulos precedentes. Mais especificamente, estudamos a conexão entre os espaços de fase real e complexo de mapa de Hénon dissipativos, quando se mantém os parâmetros de controle no domínio real. Tal cenário nos permite encontrar dois resultados novos: (i) a existência de uma infinidade de órbitas periódicas que, apesar de existirem no plano complexo, são estáveis para valores reais dos parâmetros de controle, e (ii) que os pontos críticos, atores centrais hoje em dia da dinâmica holomórfica (i. e. analítica complexa), na verdade são totalmente não-essenciais. Isto porque, como demonstramos, a mesma fenomenologia da dinâmica holomórfica pode ser obtida num regime realístico onde sequer é possível definir-se pontos críticos. Em particular, mostramos como obter conjuntos mais gerais que o famoso conjunto de Mandelbrot sem envolver considerações de pontos críticos. / In this Thesis we discuss three key prablems that establish a number of connections between fundamental aspects and practical applications in Nonlinear Dynamics. In the first chapter we review basic concepts and how to simplify and exactly solve the equations of motion of a polynomial di.ffeomorphism which exhibits a full range of complexity, fram integrability to dissipative chaos: the Hénon map. We report exact results defining all periodic orbits with periods up to 6 in the Hamiltonian limit of the model for a representative nonlinearity supporting a full Smale horseshoe, when all possible orbits are real. We show that it is possible to classify the orbits according the algebraic irrationality involved in the exact solutions) re-ordering and making visible interdependencies of the labels normally derived via symbolic dynamics. Our exact solution allow us to solve for good the puzzle of the orbital center-of-mass. In the second chapter we show that, still in the Hamiltonian limit but for arbitrary values of the nonlinearity parameter) the set of periodic orbits is composed by three well-defined algebraic con,jugacy classes. We show that the class of asymmetrical orbits is composed by pairs of orbits exhibiting a chiral symmetry. Although in the literature it is common to study mainly symmetrical orbits) we show that it is the asymmetric orbits that completely dominate the orbital statistics when the period graws. For instance, for period 20 we computed that 97.2% of the 52377 existing orbits, considered thus far as being merely asymmetric orbits, are in fact pairs of orbits with chiral symmetry. The Thesis concludes in the third chapter, where we present a numerical study to verify some dynamical aspects that) due to the extension of the calculations) cannot be decided analytically as in the two preceding chapters. More specifically) we study the connection between the real and the complex phase-spaces of the dissipative Hénon map when maintaining the control parameters in the real domain. This scenario allows v.S to find two new results which are extremely surprising: (i) The existence of an infinity of periodic orbits which, albeit living in the complex plane) are stable for real values of the contral parameters) and (ii) That the critical point) key players nowadays in holomorphic (i. e. analytic complex) dynamics, in fact are totally non-essential. This because, as we show, the same phenomenology of holomorphic dynamics may be obtained in a realistic regime where it is not even possible to define critical points. In particular, we show how to obtain sets more general than the famous Mandelbrat set without considering critical points.
3

Órbitas quirais, classes de conjugação e dinâmica holomórfica sem pontos críticos

Endler, Antônio January 2006 (has links)
Nesta Tese discutimos três problemas chave que estabelecem um número de conexões entre aspectos fundamentais e aplicações práticas em Dinâmica Não-Linear. No primeiro capítulo revisamos conceitos básicos e como simplificar e resolver de modo exato as equações de movimento de um difeomorfismo polinomial que exibe um cenário rico em complexidade, da integrabilidade ao caos dissipativo: o mapa de Hénono Apresentamos resultados exatos definindo todas as órbitas periódicas de períodos até 6 no limite Hamiltoniano do modelo para uma de não-linearidade representativa onde existe uma ferradura completa de Smale, quando todas órbitas possíveis são reais. Mostramos que é possível classificar as órbitas segundo as irracionalidades algébricas envolvidas nas soluções exatas, re-ordenando e mostrando inter-dependências dos rótulos normalmente derivados através da dinâmica simbólica. Nossas soluções exatas permitem-nos resolver de uma vez por todas o enigma do centro de massa orbital, que consiste na observação empírica, apresentada na literatura, da simplificação freqüente da soma das coordenadas dos pontos orbitais em simples números racionais. No segundo capítulo mostramos que, ainda no limite Hamiltoniano mas para valores arbitrários do parâmetro de não-linearidade, o conjunto das órbitas periódicas é formado por três classes de conjugação algébrica bem definidas. Mostramos que a classe das órbitas assimétricas é composto por pares de órbitas que exibem simetria quiral. Apesar de ser comum na literatura estudar-se preferencialmente apenas as órbitas simétricas, mostramos que as órbitas assimétricas são as que dominam por completo a estatística orbital à medida que o período cresce. Por exemplo, para período 20, computamos que 97.2% das 52377 órbitas existentes, consideradas até aqui como meramente assimétricas são, na verdade, pares de órbitas com simetria quiral. A Tese é concluida no terceiro capítulo, onde apresentamos um estudo numérico para verificar alguns aspectos dinâmicos que, devido à extensão dos cálculos, não podem ser decididos analiticamente como nos dois capítulos precedentes. Mais especificamente, estudamos a conexão entre os espaços de fase real e complexo de mapa de Hénon dissipativos, quando se mantém os parâmetros de controle no domínio real. Tal cenário nos permite encontrar dois resultados novos: (i) a existência de uma infinidade de órbitas periódicas que, apesar de existirem no plano complexo, são estáveis para valores reais dos parâmetros de controle, e (ii) que os pontos críticos, atores centrais hoje em dia da dinâmica holomórfica (i. e. analítica complexa), na verdade são totalmente não-essenciais. Isto porque, como demonstramos, a mesma fenomenologia da dinâmica holomórfica pode ser obtida num regime realístico onde sequer é possível definir-se pontos críticos. Em particular, mostramos como obter conjuntos mais gerais que o famoso conjunto de Mandelbrot sem envolver considerações de pontos críticos. / In this Thesis we discuss three key prablems that establish a number of connections between fundamental aspects and practical applications in Nonlinear Dynamics. In the first chapter we review basic concepts and how to simplify and exactly solve the equations of motion of a polynomial di.ffeomorphism which exhibits a full range of complexity, fram integrability to dissipative chaos: the Hénon map. We report exact results defining all periodic orbits with periods up to 6 in the Hamiltonian limit of the model for a representative nonlinearity supporting a full Smale horseshoe, when all possible orbits are real. We show that it is possible to classify the orbits according the algebraic irrationality involved in the exact solutions) re-ordering and making visible interdependencies of the labels normally derived via symbolic dynamics. Our exact solution allow us to solve for good the puzzle of the orbital center-of-mass. In the second chapter we show that, still in the Hamiltonian limit but for arbitrary values of the nonlinearity parameter) the set of periodic orbits is composed by three well-defined algebraic con,jugacy classes. We show that the class of asymmetrical orbits is composed by pairs of orbits exhibiting a chiral symmetry. Although in the literature it is common to study mainly symmetrical orbits) we show that it is the asymmetric orbits that completely dominate the orbital statistics when the period graws. For instance, for period 20 we computed that 97.2% of the 52377 existing orbits, considered thus far as being merely asymmetric orbits, are in fact pairs of orbits with chiral symmetry. The Thesis concludes in the third chapter, where we present a numerical study to verify some dynamical aspects that) due to the extension of the calculations) cannot be decided analytically as in the two preceding chapters. More specifically) we study the connection between the real and the complex phase-spaces of the dissipative Hénon map when maintaining the control parameters in the real domain. This scenario allows v.S to find two new results which are extremely surprising: (i) The existence of an infinity of periodic orbits which, albeit living in the complex plane) are stable for real values of the contral parameters) and (ii) That the critical point) key players nowadays in holomorphic (i. e. analytic complex) dynamics, in fact are totally non-essential. This because, as we show, the same phenomenology of holomorphic dynamics may be obtained in a realistic regime where it is not even possible to define critical points. In particular, we show how to obtain sets more general than the famous Mandelbrat set without considering critical points.
4

Propriedades métricas de sistemas multiparamétricos discretos

Torrico Chávez, César Abraham January 2008 (has links)
Neste trabalho estudamos propriedades métricas de certas estruturas recentemente descobertas em diagramas de fase, chamadas de conjuntos tipo de Mandelbrot. Tais estruturas (conjuntos) são importantes pois aparecem repetidamente em sistemas dinâmicos, em particular, em equações diferenciais que descrevem lasers e outros modelos físicos. De particular interesse, são escalonamentos (scalings) de codimensão 2, i.e. que dependem da variação simultânea de dois parâmetros físicos para serem observados. Através da obtenção de expressões exatas dos pontos de nascimento de domínios de estabilidade {"fiores de cactus'?, conseguimos demonstrar analiticamente que a velocidade de acumulação dos domínios convergepara um valor limite constante igual à unidade. Outras taxas de convergência tais como, por exemplo, a orientação do eixo dos domínios com respeito à horizontal, a diminuição das alturas e das áreas dos domínios, também convergem para a unidade. Tal convergência foi também por nós encontrada no conjunto de Mandelbrot. Em ambos casos as convergências obedecem uma lei de potência com expoentes inteiros, em forte contraste com a convergência típica de Feigenbaum, que também segue uma lei de potências, porém com expoente fracionário. Por razões discutidas em detalhe dentro do trabalho, conjecturamos ser o escalonamento unitário de carácter geral sempre que se tenham fam{lias de fases periódicas participando de um processo de acumulação com adição de períodos. Observamos que os conjuntos de números racionais (números de rotação) que rotulam as infinitas fam{lias de fiores, (fases periódicas) nos conjuntos tipo-Mandelbrot, também exibem a mesma convergência unitária. Tal fato nos leva a crer que, dum ponto de vista teórico, este "scaling"parece originar-se de propriedades métricas dos racwna%s. Além disto, complementamos o estudo das propriedades métricas dos conjuntos tipo-Mandelbrot com um estudo detalhado da sua estrutura interna, via multiplicadores das órbitas periódicas estáveis, reais e complexas. Observamos que a parte real (imaginária) dos multiplicadores define certos eixos de simetria transversal (longitudinal) em cada fior, que podem ser tomados como uma espécie de "sistema de coordenadas cartesiano". Em tal sistema, observamos um ordenamento simétrico dos números de rotação das fiores, de maneira similar ao ordenamento dos números racionais no círculo unitário. Mostrando desta forma que o interior de cada fior é isomorfo ao círculo unitário. A medida que nos aproximamos das zonas de transição isoperiódica (de órbitas complexas para reais), observamos uma rotação dos eixos transversais locais de cadafior em direção aos eixos longitudinais, até ambosficarem alinhados, no limite da acumulação. Esta mudança não ocorre nos círculos do conjunto de Mandelbrot, onde ambos eixos permanecem perpendiculares até alcançar um tamanho nulo no ponto raiz. Isto parece mostrar que, apesar dos conjuntos Mandelbrot e tipo-Mandelbrot compartilharem várias propriedades métricas, a ausência de conectividade local nestes últimos modifica significativamente sua estrutura interna. / In this work we study scaling proprerties of certain structures recently found in phase diagrams, called as Mandelbrot-like sets. Such structures (sets) are important becausethey appear repeatedly in dinamical systems, particularly, in differentials equations that describe lasers and others physical models. Df particular interest, are scalings of codimension-2, i.e., that depend on the simultaneous variation of two physical parameters to be observed. Through the obtention of exact expressions for the birth points of stability domains ("cactus flowers''), we proved analitically that the accumulation rate of the domains converges to a constant limit value equal to unity. Another convergence rates such as, for example, orientation of the domain axis with respect to the horizontal, the decrease of domains heights and areas, also converge to unity. We also founded this convergence in the Mandelbrot set. In both cases, the convergences obey a power law with integer exponents, in contrast with the typical Feigenbaum convergence, that also follows a power law but with fraccionary exponent. For the reasons discuted in detail along the work, we conjecture this unitary scaling to have a general caracter always that one have families of periodic fases participating in a process of accumulation with period adding. We observed that the rational numbers sets that label the infinity flower's families (periodic phases), in the Mandelbrot-like sets, also exhibit the same rate of convergence. This fact lead us to believe, from a theoretical point of view, that this scaling seems to arise from the metrical properties of rationals. Besides this, we complemented the study of scalings in the Mandelbrot-like sets with a detailed study of their internal structure, via multipliers of the stable periodic orbits, both real and complexo We observed that the real (imaginary) part of multipliers define certain transversal (longitudinal) axis of simetry en each flower, that can be take as a sort of local "cartesian coordinates system". In such system, we observe a symmetric ordering of the rotation numbers of flowers, like the ordering of rational numbers in the unitary circle. Showing of this form that the inner of each flower is isomorphic to the unitary circle. As we aproximate to the isoperiodic transition zones (of complexto realorbits),wefounded a rotationof the transversallocalaxis of each flower toward the longitudinal axis, until both axis stay aligned, at the accumulation limito This rotation does not occur inside the Mandelbrot set circles, where both axis remain perpendicular until they reach a null size at the root point. This seems to show that, in spite of Mandelbrot and Mandelbrot-like sets to share several metric properties, the lack of local conectivity in the latest modifies significantly their internal structure.
5

Propriedades métricas de sistemas multiparamétricos discretos

Torrico Chávez, César Abraham January 2008 (has links)
Neste trabalho estudamos propriedades métricas de certas estruturas recentemente descobertas em diagramas de fase, chamadas de conjuntos tipo de Mandelbrot. Tais estruturas (conjuntos) são importantes pois aparecem repetidamente em sistemas dinâmicos, em particular, em equações diferenciais que descrevem lasers e outros modelos físicos. De particular interesse, são escalonamentos (scalings) de codimensão 2, i.e. que dependem da variação simultânea de dois parâmetros físicos para serem observados. Através da obtenção de expressões exatas dos pontos de nascimento de domínios de estabilidade {"fiores de cactus'?, conseguimos demonstrar analiticamente que a velocidade de acumulação dos domínios convergepara um valor limite constante igual à unidade. Outras taxas de convergência tais como, por exemplo, a orientação do eixo dos domínios com respeito à horizontal, a diminuição das alturas e das áreas dos domínios, também convergem para a unidade. Tal convergência foi também por nós encontrada no conjunto de Mandelbrot. Em ambos casos as convergências obedecem uma lei de potência com expoentes inteiros, em forte contraste com a convergência típica de Feigenbaum, que também segue uma lei de potências, porém com expoente fracionário. Por razões discutidas em detalhe dentro do trabalho, conjecturamos ser o escalonamento unitário de carácter geral sempre que se tenham fam{lias de fases periódicas participando de um processo de acumulação com adição de períodos. Observamos que os conjuntos de números racionais (números de rotação) que rotulam as infinitas fam{lias de fiores, (fases periódicas) nos conjuntos tipo-Mandelbrot, também exibem a mesma convergência unitária. Tal fato nos leva a crer que, dum ponto de vista teórico, este "scaling"parece originar-se de propriedades métricas dos racwna%s. Além disto, complementamos o estudo das propriedades métricas dos conjuntos tipo-Mandelbrot com um estudo detalhado da sua estrutura interna, via multiplicadores das órbitas periódicas estáveis, reais e complexas. Observamos que a parte real (imaginária) dos multiplicadores define certos eixos de simetria transversal (longitudinal) em cada fior, que podem ser tomados como uma espécie de "sistema de coordenadas cartesiano". Em tal sistema, observamos um ordenamento simétrico dos números de rotação das fiores, de maneira similar ao ordenamento dos números racionais no círculo unitário. Mostrando desta forma que o interior de cada fior é isomorfo ao círculo unitário. A medida que nos aproximamos das zonas de transição isoperiódica (de órbitas complexas para reais), observamos uma rotação dos eixos transversais locais de cadafior em direção aos eixos longitudinais, até ambosficarem alinhados, no limite da acumulação. Esta mudança não ocorre nos círculos do conjunto de Mandelbrot, onde ambos eixos permanecem perpendiculares até alcançar um tamanho nulo no ponto raiz. Isto parece mostrar que, apesar dos conjuntos Mandelbrot e tipo-Mandelbrot compartilharem várias propriedades métricas, a ausência de conectividade local nestes últimos modifica significativamente sua estrutura interna. / In this work we study scaling proprerties of certain structures recently found in phase diagrams, called as Mandelbrot-like sets. Such structures (sets) are important becausethey appear repeatedly in dinamical systems, particularly, in differentials equations that describe lasers and others physical models. Df particular interest, are scalings of codimension-2, i.e., that depend on the simultaneous variation of two physical parameters to be observed. Through the obtention of exact expressions for the birth points of stability domains ("cactus flowers''), we proved analitically that the accumulation rate of the domains converges to a constant limit value equal to unity. Another convergence rates such as, for example, orientation of the domain axis with respect to the horizontal, the decrease of domains heights and areas, also converge to unity. We also founded this convergence in the Mandelbrot set. In both cases, the convergences obey a power law with integer exponents, in contrast with the typical Feigenbaum convergence, that also follows a power law but with fraccionary exponent. For the reasons discuted in detail along the work, we conjecture this unitary scaling to have a general caracter always that one have families of periodic fases participating in a process of accumulation with period adding. We observed that the rational numbers sets that label the infinity flower's families (periodic phases), in the Mandelbrot-like sets, also exhibit the same rate of convergence. This fact lead us to believe, from a theoretical point of view, that this scaling seems to arise from the metrical properties of rationals. Besides this, we complemented the study of scalings in the Mandelbrot-like sets with a detailed study of their internal structure, via multipliers of the stable periodic orbits, both real and complexo We observed that the real (imaginary) part of multipliers define certain transversal (longitudinal) axis of simetry en each flower, that can be take as a sort of local "cartesian coordinates system". In such system, we observe a symmetric ordering of the rotation numbers of flowers, like the ordering of rational numbers in the unitary circle. Showing of this form that the inner of each flower is isomorphic to the unitary circle. As we aproximate to the isoperiodic transition zones (of complexto realorbits),wefounded a rotationof the transversallocalaxis of each flower toward the longitudinal axis, until both axis stay aligned, at the accumulation limito This rotation does not occur inside the Mandelbrot set circles, where both axis remain perpendicular until they reach a null size at the root point. This seems to show that, in spite of Mandelbrot and Mandelbrot-like sets to share several metric properties, the lack of local conectivity in the latest modifies significantly their internal structure.
6

Propriedades métricas de sistemas multiparamétricos discretos

Torrico Chávez, César Abraham January 2008 (has links)
Neste trabalho estudamos propriedades métricas de certas estruturas recentemente descobertas em diagramas de fase, chamadas de conjuntos tipo de Mandelbrot. Tais estruturas (conjuntos) são importantes pois aparecem repetidamente em sistemas dinâmicos, em particular, em equações diferenciais que descrevem lasers e outros modelos físicos. De particular interesse, são escalonamentos (scalings) de codimensão 2, i.e. que dependem da variação simultânea de dois parâmetros físicos para serem observados. Através da obtenção de expressões exatas dos pontos de nascimento de domínios de estabilidade {"fiores de cactus'?, conseguimos demonstrar analiticamente que a velocidade de acumulação dos domínios convergepara um valor limite constante igual à unidade. Outras taxas de convergência tais como, por exemplo, a orientação do eixo dos domínios com respeito à horizontal, a diminuição das alturas e das áreas dos domínios, também convergem para a unidade. Tal convergência foi também por nós encontrada no conjunto de Mandelbrot. Em ambos casos as convergências obedecem uma lei de potência com expoentes inteiros, em forte contraste com a convergência típica de Feigenbaum, que também segue uma lei de potências, porém com expoente fracionário. Por razões discutidas em detalhe dentro do trabalho, conjecturamos ser o escalonamento unitário de carácter geral sempre que se tenham fam{lias de fases periódicas participando de um processo de acumulação com adição de períodos. Observamos que os conjuntos de números racionais (números de rotação) que rotulam as infinitas fam{lias de fiores, (fases periódicas) nos conjuntos tipo-Mandelbrot, também exibem a mesma convergência unitária. Tal fato nos leva a crer que, dum ponto de vista teórico, este "scaling"parece originar-se de propriedades métricas dos racwna%s. Além disto, complementamos o estudo das propriedades métricas dos conjuntos tipo-Mandelbrot com um estudo detalhado da sua estrutura interna, via multiplicadores das órbitas periódicas estáveis, reais e complexas. Observamos que a parte real (imaginária) dos multiplicadores define certos eixos de simetria transversal (longitudinal) em cada fior, que podem ser tomados como uma espécie de "sistema de coordenadas cartesiano". Em tal sistema, observamos um ordenamento simétrico dos números de rotação das fiores, de maneira similar ao ordenamento dos números racionais no círculo unitário. Mostrando desta forma que o interior de cada fior é isomorfo ao círculo unitário. A medida que nos aproximamos das zonas de transição isoperiódica (de órbitas complexas para reais), observamos uma rotação dos eixos transversais locais de cadafior em direção aos eixos longitudinais, até ambosficarem alinhados, no limite da acumulação. Esta mudança não ocorre nos círculos do conjunto de Mandelbrot, onde ambos eixos permanecem perpendiculares até alcançar um tamanho nulo no ponto raiz. Isto parece mostrar que, apesar dos conjuntos Mandelbrot e tipo-Mandelbrot compartilharem várias propriedades métricas, a ausência de conectividade local nestes últimos modifica significativamente sua estrutura interna. / In this work we study scaling proprerties of certain structures recently found in phase diagrams, called as Mandelbrot-like sets. Such structures (sets) are important becausethey appear repeatedly in dinamical systems, particularly, in differentials equations that describe lasers and others physical models. Df particular interest, are scalings of codimension-2, i.e., that depend on the simultaneous variation of two physical parameters to be observed. Through the obtention of exact expressions for the birth points of stability domains ("cactus flowers''), we proved analitically that the accumulation rate of the domains converges to a constant limit value equal to unity. Another convergence rates such as, for example, orientation of the domain axis with respect to the horizontal, the decrease of domains heights and areas, also converge to unity. We also founded this convergence in the Mandelbrot set. In both cases, the convergences obey a power law with integer exponents, in contrast with the typical Feigenbaum convergence, that also follows a power law but with fraccionary exponent. For the reasons discuted in detail along the work, we conjecture this unitary scaling to have a general caracter always that one have families of periodic fases participating in a process of accumulation with period adding. We observed that the rational numbers sets that label the infinity flower's families (periodic phases), in the Mandelbrot-like sets, also exhibit the same rate of convergence. This fact lead us to believe, from a theoretical point of view, that this scaling seems to arise from the metrical properties of rationals. Besides this, we complemented the study of scalings in the Mandelbrot-like sets with a detailed study of their internal structure, via multipliers of the stable periodic orbits, both real and complexo We observed that the real (imaginary) part of multipliers define certain transversal (longitudinal) axis of simetry en each flower, that can be take as a sort of local "cartesian coordinates system". In such system, we observe a symmetric ordering of the rotation numbers of flowers, like the ordering of rational numbers in the unitary circle. Showing of this form that the inner of each flower is isomorphic to the unitary circle. As we aproximate to the isoperiodic transition zones (of complexto realorbits),wefounded a rotationof the transversallocalaxis of each flower toward the longitudinal axis, until both axis stay aligned, at the accumulation limito This rotation does not occur inside the Mandelbrot set circles, where both axis remain perpendicular until they reach a null size at the root point. This seems to show that, in spite of Mandelbrot and Mandelbrot-like sets to share several metric properties, the lack of local conectivity in the latest modifies significantly their internal structure.

Page generated in 0.092 seconds