• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 8
  • 7
  • Tagged with
  • 15
  • 15
  • 5
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Développement d'un film mince à base de polymère stimuli-sensible en vue d'une détection d'analyte cible

Rarivoarison, Soatoavina Kansas 10 February 2024 (has links)
The efforts of the pioneers who designed stimuli-sensitive polymers are compensated by several emerging applications inspired by this new technology. The specificity of these polymers lies in the conformation and / or solvation changes of macromolecular chains under the variation of an external stimulus such as pH, temperature, light, magnetic or electric waves. In this research project, a thin film of stimuli-sensitive polymer that acts as a transducer was deposited on a plasmonic layer to produce a sensor chip designed to detect ferric ions. To do this, microgels composed of a dual stimuli sensitive polymer called poly (N-isopropylacrylamide-co-acrylic acid) (PNIPAm-co-AAc) were synthesized with a thermo initiator: ammonium persulfate (APS), a monomer responsible for thermosensitivity: N-isopropylacrylamide (NIPAm), a comonomer responsible for pH sensitivity: AAc and a crosslinking agent: N,N'-methylenebisacrylamide (BIS). First, several studies on the thermo and pH-sensitivity of microgels are carried out. From these studies we obtain the temperature of the volume phase transition (VPTT) of microgels, which is between 25 to 35 °C. The reproducibility of the synthesis is conclusive because the VPTT and the size of the microgels in each synthesis remain approximately the same. Then, the microgels are functionalized with dopamine which has catechol groups known to chelate the ferric ions. Although the VPTT of the functionalized microgels is shifted towards higher temperatures and their degree of freedom to collapse decreases, they remain stimuli sensitive. In a second step, the functionalized microgels are deposited on a gold-coated prism using the Langmuir-Blodgett technique. In order to optimize the surface assembly, the surface pressure and the number of dipping cycles were varied. The deposited microgels are characterized by scanning electron microscopy (SEM) and atomic force microscopy (AFM). Once assembled, surface plasmon resonance spectroscopy (SPR) is employed to study the sensitivity of the microgels to Fe³⁺. The shift in the surface plasmon resonance wavelength (Δλ[subscript SPR]) in the presence of Fe³⁺ will be highlighted to demonstrate this sensitivity. / Les polymères sensibles aux stimuli diffèrent des polymères conventionnels. La spécificité de ces polymères réside dans le changement de la conformation et/ou de la solvatation des chaînes macromoléculaires sous l'action de la variation d'un stimulus externe comme le pH, la température, la lumière, les ondes magnétiques ou électriques. Dans ce projet un film mince de polymère stimuli-sensible a été déposé sur une couche plasmonique pour fabriquer un capteur qui sert à détecter les ions ferriques. Pour ce faire, des microgels composés de réseaux polymériques du poly(N-isopropylacrylamide-co-acide acrylique) (PNIPAm-co-AAc) ont été synthétisés à partir d'un thermo-initiateur, le persulfate d'ammonium (APS), d'un monomère responsable de la thermosensibilité , le N-isopropylacrylamide (NIPAm), d'un co-monomère d'acide acrylique (AAc) et d'un agent de réticulation, le N,N'-méthylènebisacrylamide (BIS). Dans un premier temps, plusieurs caractérisations seront effectuées en fonction de la variation de la température et du pH pour mettre en évidence la thermo- et pH-sensibilité des microgels. À partir de ces études s'en découle la température de transition de volume de phase (VPTT) des microgels qui se situe entre 25 et 35 °C. La reproductibilité de la synthèse est très satisfaisante car la VPTT et la taille des microgels issus des synthèses répétées restent relativement constantes. Par la suite, les microgels ont été fonctionnalisés avec la dopamine qui comporte des groupements catéchol, connus pour chélater les ions Fe³⁺. Suite à cette fonctionnalisation, la VPTT des microgels est déplacée vers les plus hautes températures et la transition devient plus progressive. Dans un deuxième temps, les microgels fonctionnalisés sont déposés à l'aide de la technique Langmuir-Blodgett sur un prisme de Dove revêtu d'une couche d'or afin d'étudier la sensibilité des microgels face au Fe³⁺ par spectroscopie de résonnance de plasmon de surface (SPR). Le déplacement de la longueur d'onde de la résonance de plasmon de surface (Δλ[indice SPR]) est mise en exergue dans ce travail pour démontrer cette sensibilité. Afin d'optimiser cet assemblage en surface, la pression de surface et le nombre de trempages ont été variés. L'assemblage a aussi été caractérisé par microscopie électronique à balayage (SEM) et microscopie à force atomique (AFM).
2

Nanoengineering plasmonic-based hybrid nanomaterials : towards smart soft materials for biomedical applications

Sepúlveda, Adolfo 22 May 2024 (has links)
Note sur les annexes : 7 documents en format mp4, « the nanoparticle tracking analysis (NTA) technique uses the properties of both light scattering and Brownian motion to extract information about the size and concentration of particles in suspension by employing microscopy techniques. Through the use of an objective lens and a camera, NTA is able to record videos of the scattered light produced by individual particles as they traverse a microchannel. » / Les matériaux souples stimulants dotés de propriétés hybrides présentent un grand intérêt dans les domaines de la biomédecine et de la santé, car ils permettent de développer de nouveaux actionneurs intelligents pour des applications telles que l'administration de médicaments, la cicatrisation des plaies et les plateformes de culture cellulaire in vitro. Les hydrogels thermosensibles, tels que l'hydrogel de poly(N-isopropylacrylamide) (pNIPAM), sont couramment utilisés comme matériaux souples en raison de leur biocompatibilité et de leur capacité à subir des modifications de leurs propriétés physiques et/ou chimiques en fonction de la température, par exemple un rétrécissement ou un gonflement volumétrique. L'incorporation de nanoparticules d'or plasmoniques dans le réseau d'hydrogel représente une excellente alternative pour déclencher localement et à distance le retrait volumétrique de l'hydrogel sous l'effet de la lumière. Les nanoparticules d'or supportant des résonances plasmoniques de surface localisées (LSPR) présentent des propriétés photothermiques exceptionnelles en raison de leur grande section d'extinction optique aux longueurs d'onde visibles et proches de l'infrarouge. Il est donc impératif de bien comprendre les paramètres qui influencent leur synthèse pour garantir la réussite de la mise en œuvre de ces nanomatériaux hybrides intelligents dans le domaine biomédical. Cette compréhension est essentielle pour développer des protocoles bien contrôlés et échelonnables avec des propriétés adaptées et des méthodes de fabrication simples, rentables et à grande échelle. L'objectif principal du travail présenté dans cette thèse était de développer un nanomatériau hybride à base plasmonique avec un comportement réversible et une réactivité élevée pour être utilisé comme actionneurs souples intelligents pilotés par la lumière dans des applications biomédicales. À cette fin, des microgels cœur-coquille Au-pNIPAM ont été choisis comme éléments constitutifs des matériaux hybrides sensibles à la lumière et synthétisés par polymérisation par précipitation avec ensemencement. Dans un premier temps, le rôle crucial des points de nucléation dans le processus de polymérisation a été étudié, montrant leur influence, indépendamment de la taille du noyau d'or, sur la modulation de paramètres importants pour la synthèse de microgels Au-pNIPAM, y compris le rendement d'encapsulation des noyaux d'or, la taille et la capacité de rétrécissement du nanomatériau. Deuxièmement, en exploitant le protocole de synthèse bien contrôlé et la stabilité colloïdale des microgels cœur-coquille Au-pNIPAM, une méthode simple basée sur la compression et les colloïdes a été développée pour fabriquer des films minces Au-pNIPAM photopolymérisables. Cette méthode a permis la fabrication de films homogènes, en termes de densité de noyaux d'or, de l'ordre du micron sur des substrats rigides et malléables. Grâce à l'utilisation de la lumière et de photomasques, le patronage des films Au-pNIPAM a permis la fabrication de microgels Au-pNIPAM anisotropes avec des rapports d'aspect largeur-hauteur élevés sur des substrats et des suspensions, ajoutant une nouvelle dimension à la méthode de fabrication mise au point. Enfin, pour démontrer les propriétés d'actionnement de la lumière du matériau hybride développé et en tirant parti des propriétés thermoplasmoniques collectives des nanoparticules d'or, des robots nageurs guidés par la lumière ont été fabriqués. Sous exposition à la lumière, la trajectoire et la rotation des robots nageurs à l'interface air/eau ont été contrôlées avec précision grâce à l'effet Marangoni induit par la lumière. / Stimuli-responsive soft materials possessing hybrid properties are of great interest in the biomedical and healthcare fields to develop novel smart actuators for applications in, for instance, drug delivery, wound healing, and in-vitro cell culture platforms. Thermo-responsive hydrogels, such as the poly(N-isopropylacrylamide) (pNIPAM) hydrogel, are commonly used as soft materials owing to their biocompatibility and capacity to experience changes in their physical and/or chemical properties as a function of temperature, e.g., volumetric shrinkage. Incorporating plasmonic gold nanoparticles within the hydrogel network represents an excellent alternative to locally and remotely trigger the volumetric shrinkage of the hydrogel upon light illumination. Gold nanoparticles supporting localized surface plasmon resonances (LSPR) exhibit exceptional photothermal properties due to their large optical extinction cross-section at visible and near-infrared wavelengths. A comprehensive understanding of the parameters that influence their syntheses is imperative to ensure the successful implementation of these smart hybrid nanomaterials in the biomedical field. This understanding is pivotal in developing well-controlled and scalable protocols with tailored properties and simple, cost-effective, and large-scale fabrication methods. The main objective of the work presented in this thesis was to develop a plasmonic-based hybrid nanomaterial with reversible behavior and high responsivity to be used as light-driven smart soft actuators in biomedical applications. To this, Au-pNIPAM core-shell microgels were chosen as building blocks of light-responsive hybrid materials and synthesized through seeded precipitation polymerization. At first, the crucial role of nucleation points in the polymerization process was studied, showing their influence - regardless of gold core size - on the modulation of significant parameters for the synthesis of Au-pNIPAM core-shell microgels, including encapsulation yield of gold cores, size, and shrinking capacity of the nanomaterial. Secondly, by exploiting the well-controlled synthesis protocol and colloidal stability of Au-pNIPAM core-shell microgels, a simple compression- and colloid-based method was developed to fabricate photopolymerizable thin Au-pNIPAM films. This method allowed the fabrication of homogeneous films - in terms of gold core number density - in the micron-size range onto both rigid and malleable substrates. Through the use of light and photomasks, the patterning of Au-pNIPAM films permitted the fabrication of anisotropic Au-pNIPAM microgels with high width-to-height aspect rations on substrates and suspension, adding a new dimension to the developed fabrication method. Finally, to demonstrate the light-actuation properties of the developed hybrid material and by leveraging the collective thermoplasmonic properties of gold nanoparticles, light-guided swimming robots of millimeter-scale were fabricated. Under light exposure, the trajectory and rotation of swimming robots at the air/water interface were precisely controlled due to the light-induced Marangoni effect.
3

Nouveaux biomatériaux saloplastiques basés sur des complexes de polyélectrolytes ultracentrifugés

Tirado Viloria, Patricia Carolina 18 September 2012 (has links) (PDF)
Ce travail avait pour but de développer un nouveau type de matériaux basés sur des complexes polyelectrolytes. Ces matériaux ont été obtenus par l'ultracentrifugation des complexes soit d'origine naturelle ou soit d'origine synthétique. Le système de polyélectrolytes ainsi que les conditions dans lesquelles ces matériaux peuvent être obtenus, suivi par le choix du système optimal pour des études complémentaires ont été décrits. PAA / PAH CoPECs a été choisi comme systèmes modèles de synthèse et ses propriétés physico chimiques (composition, structure et les propriétés mécaniques) ont été décrits ici en détails. Nous avons montré que les propriétés de la composition, la structure et mécanique de le PAA/PAH CoPECs peut être contrôlée en modifiant les conditions d'assemblage (pH, concentration des polyélectrolytes, [NaCl], la vitesse et la commande de l'addition). Également, les conditions environnementales ([NaCl] et pH) ont également été utilisés pour contrôler la taille des pores et porosité des PAA/PAH CoPECs . Enfin, leur capacité à servir de support pour l'immobilisation d'enzymes a également été étudiée. Nous avons optimise les conditions d'assemblage afin de maintenir le maximum quantité de l'enzyme dans le complexe. Nous avons également démontré que CoPECs fournit la stabilisation à long terme, ainsi que la protection de l'enzyme à des températures élevées. Ainsi, PAA / PAH CoPECs sont des candidats potentiels pour être utilisé comme des supports pour l'ingénierie tissulaire et pour l'immobilisation d'enzymes.
4

Revêtement intelligent à base des silices mésoporeuses fonctionnalisées pour le relargage stimulé d'agents antimicrobiens

Mejri, Eya 24 April 2018 (has links)
Les biofilms bactériens sont composés d’organismes unicellulaires vivants au sein d’une matrice protectrice, formée de macromolécules naturelles. Des biofilms non désirés peuvent avoir un certain nombre de conséquences néfastes, par exemple la diminution du transfert de chaleur dans les échangeurs de chaleurs, l’obstruction de membranes poreuses, la contamination des surfaces coques de navires, etc. Par ailleurs, les bactéries pathogènes qui prolifèrent dans un biofilm posent également un danger pour la santé s’ils croissent sur des surfaces médicales synthétiques comme des implants biomédicaux, cathéters ou des lentilles de vue. De plus, la croissance sur le tissu naturel par certaines souches des bactéries peut être fatale, comme Pseudomonas aeruginosa dans les poumons. Cependant, la présence de biofilms reste difficile à traiter, car les bactéries sont protégées par une matrice extracellulaire. Pour tenter de remédier à ces problèmes, nous proposons de développer une surface antisalissure (antifouling) qui libère sur demande des agents antimicrobiens. La proximité et la disposition du système de relargage placé sous le biofilm, assureront une utilisation plus efficace des molécules antimicrobiennes et minimiseront les effets secondaires de ces dernières. Pour ce faire, nous envisageons l’utilisation d’une couche de particules de silice mésoporeuses comme agents de livraison d’agents antimicrobiens. Les nanoparticules de silice mésoporeuses (MSNs) ont démontré un fort potentiel pour la livraison ciblée d’agents thérapeutiques et bioactifs. Leur utilisation en nano médecine découle de leurs propriétés de porosité intéressantes, de la taille et de la forme ajustable de ces particules, de la chimie de leur surface et leur biocompatibilité. Ces propriétés offrent une flexibilité pour diverses applications. De plus, il est possible de les charger avec différentes molécules ou biomolécules (de tailles variées, allant de l’ibuprofène à l’ARN) et d’exercer un contrôle précis des paramètres d’adsorption et des cinétiques de relargage (désorption). Mots Clés : biofilms, nanoparticules de silice mésoporeuses, microfluidique, surface antisalissure. / Bacterial biofilms are composed of single-cell organisms living within a protective matrix formed from natural macromolecules. Unwanted biofilms may have a number of adverse consequences such as reducing heat transfer in heat exchangers, obstruction of porous membranes, surface contamination ships hulls etc. In addition, pathogenic bacteria growing in a biofilm also pose a health hazard when this kind of film is found attached to biomedical implants, catheters, or on contact lenses. The presence of biofilms is difficult to treat because the bacteria are highly resistant to antimicrobial agents. In an attempt to address these problems, we propose to develop an antifouling surface which releases on demand antimicrobial agents in the presence of a biofilm. The proximity and the positioning of the delivery system of bioactive agents under the biofilm will ensure a more efficient use of antimicrobial molecules and minimize side effects of the latter. To do this, we consider the use of layers of colloidal particles of meso-porous silica as delivery agents of antimicrobial agents. Mesoporous silica nanoparticles (NPS Ms) have demonstrated a strong potential for targeted delivery of therapeutic and bioactive agents. Their use in nanomedicine stems from their interesting properties of porosity, the size and the adjustable shape of these particles, their surface chemistry providing a great flexibility for various functionalizations. Moreover, it is possible to load them with various molecules or biomolecules (of various sizes, ranging from ibuprofen to RNA), and exert fine control of the adsorption parameters and release kinetics (desorption). These particles also demonstrate excellent biocompatibility in vitro and in vivo. Keywords : biofilm, mesoporous nanosilica particles, microfluidics, antifouling surfaces.
5

Évaluation des performances écoénergétiques des technologies de fenestration intelligente à opacité variable

Dussault, Jean-Michel 19 April 2018 (has links)
Les travaux de recherche présentés dans ce mémoire font état des avancées réalisées concernant l'évaluation du potentiel des technologies de fenestration intelligente à opacité variable face à la réduction de la consommation énergétique dans les bâtiments. Pour ce faire un modèle numérique de bâtiment a été développé, puis les propriétés optiques des fenêtres intelligentes ont été optimisées afin d'atteindre un coût minimal de chauffage et de climatisation du bâtiment. Les recherches ont tout d'abord commencé par une estimation des performances des fenêtres intelligentes en analysant les résultats d'optimisation énergétique pour une semaine typique à chaque saison de l'année, et ce, pour un bâtiment situé au Québec considérant un mur avec fenêtre intelligente orientée au sud. Les résultats obtenus et présentés en 2011 dans le cadre d'une conférence sur les matériaux intelligents ont démontré la pertinence d'approfondir les recherches dans ce domaine. Par la suite, une étude plus détaillée des bénéfices des fenêtres intelligentes a été menée en précisant les résultats à chaque heure du jour pour une année complète, en utilisant un modèle de lumière naturelle plus réaliste et en évaluant l'impact de quatre orientations du mur avec fenêtre intelligente, i.e. nord, sud, est et ouest. Ces résultats ont fait le sujet d'un article de journal scientifique et permettent d'évaluer précisément les économies potentielles qu'une technologie de fenêtre intelligente peut entraîner. Enfin, une méthode expérimentale a été développée afin de caractériser l'ensemble des propriétés optiques d'une fenêtre intelligente nécessaires à la modélisation numérique. Cette méthode sera utilisée afin de caractériser les prototypes de fenêtres intelligentes développés au sein de l'Université Laval.
6

New saloplastic biomaterials based on ultracentrifuged polyelectrolyte complexes / Nouveaux biomatériaux saloplastiques basés sur des complexes de polyélectrolytes ultracentrifugés

Tirado Viloria, Patricia Carolina 18 September 2012 (has links)
Ce travail avait pour but de développer un nouveau type de matériaux basés sur des complexes polyelectrolytes. Ces matériaux ont été obtenus par l’ultracentrifugation des complexes soit d’origine naturelle ou soit d’origine synthétique. Le système de polyélectrolytes ainsi que les conditions dans lesquelles ces matériaux peuvent être obtenus, suivi par le choix du système optimal pour des études complémentaires ont été décrits. PAA / PAH CoPECs a été choisi comme systèmes modèles de synthèse et ses propriétés physico chimiques (composition, structure et les propriétés mécaniques) ont été décrits ici en détails. Nous avons montré que les propriétés de la composition, la structure et mécanique de le PAA/PAH CoPECs peut être contrôlée en modifiant les conditions d’assemblage (pH, concentration des polyélectrolytes, [NaCl], la vitesse et la commande de l’addition). Également, les conditions environnementales ([NaCl] et pH) ont également été utilisés pour contrôler la taille des pores et porosité des PAA/PAH CoPECs . Enfin, leur capacité à servir de support pour l’immobilisation d’enzymes a également été étudiée. Nous avons optimise les conditions d’assemblage afin de maintenir le maximum quantité de l’enzyme dans le complexe. Nous avons également démontré que CoPECs fournit la stabilisation à long terme, ainsi que la protection de l’enzyme à des températures élevées. Ainsi, PAA / PAH CoPECs sont des candidats potentiels pour être utilisé comme des supports pour l’ingénierie tissulaire et pour l’immobilisation d’enzymes. / This work was aimed to the develop of a new kind of materials of polyelectrolytes complexes. These materials were obtained by the ultracentrifugation of complexes either of natural or synthetic origin. The polyelectrolytes systems as well as the conditions under which these materials could be obtained, followed by the selection of the optimal system to further studies was described. PAA/PAH CoPECs was chosen as synthetic model systems and its physiochemical properties (composition, structure and mechanical properties) were here deeply described. We demonstrated that the composition, structure and mechanical properties can be controlled by changing the assembly conditions (pH, concentration of the polyelectrolytes, [NaCl], speed and order of addition). Moreover, the environmental conditions ([NaCl] and pH) were also used to control the porosity and pores size of the PAA/PAH CoPECs. Finally their ability to serve as scaffold for enzyme immobilization was also studied. We optimized the assembly conditions to keep the maximum of the activity. We also demonstrated that the CoPECs structure provides the stabilization in long term as well as the protection of the enzyme from high temperature. Thus, PAA/PAH CoPECs is a potential and suitable candidates as scaffold for tissue engineering and for the immobilization of enzymes.
7

Évaluation de l'impact de la ventilation intégrée à des fenêtres intelligentes sur leurs performances écoénergétiques

Cain Skaff, Michael 20 April 2018 (has links)
Ce mémoire présente les travaux effectués dans le cadre d'un projet de recherche dont le but était de déterminer le potentiel de la ventilation afin d'améliorer les performances énergétiques de fenêtres dites « intelligentes » intégrant un verre électrochromique, une technologie émergente permettant à la fenêtre d'avoir une opacité variable. Premièrement, afin d'atteindre les objectifs fixés, un modèle de fenêtre ventilée a été implanté dans un logiciel commercial de volumes finis afin d'évaluer les bénéfices de la ventilation. Les modes d'opérations de la fenêtre ventilée étudiés étant pensé afin de réduire les charges de climatisation, les simulations ont été effectuées pour des conditions extérieures standards d'été proposées par la NFRC (National Fenestration Rating Council). Une analyse de l'impact de la ventilation sur des fenêtres faites de différents verres tels que des verres clairs et des verres énergétiques low-e ainsi qu'une étude plus exhaustive pour une fenêtre intégrant un verre électrochromique ont été effectuées selon des critères d'évaluation de performance standards dans l'industrie des fenêtres. Les résultats présentés dans un premier article de journal scientifique ont démontré le potentiel des fenêtres électrochromiques ventilées et la pertinence d'approfondir les recherches sur le sujet. Par la suite, un modèle numérique développé et présenté dans le premier article a été implanté dans un modèle numérique de simulation énergétique de bâtiment existant afin d'évaluer l'impact de la ventilation sur la consommation d'énergie annuelle d'un bâtiment situé à Miami, en Floride, avec des façades faites de verres électrochromiques dont l'opacité est optimisée pour chaque heure de l'année pour minimiser la consommation d'énergie. Les performances de la ventilation en fonction de l'orientation de la façade fenestrée, c'est-à-dire nord, sud, est et ouest, ainsi que l'influence de la quantité de rayonnement solaire reçue par la façade ont été analysées. Les résultats présentés dans un deuxième article de journal scientifique ont permis d'évaluer les surcoûts acceptables engendrés par l'installation de verres électrochromiques au lieu de verres énergétiques low-e afin d'obtenir un retour sur investissement au bout de 5 à 10 ans.
8

Modélisation multi-échelles des systèmes nanophotoniques à base de matériaux intelligents / Numerical modeling of photonic systems using smart materials

Marchant, Maïté 10 April 2014 (has links)
Beaucoup d’applications en ingénierie demandent l’utilisation de matériaux intelligents qui peuvent se déformer en réponse à un stimulus extérieur. C’est dans ce contexte, que s’est posé ce projet de recherche. Bénéficiant d’un environnement pluridisciplinaire, grâce à l’association de deux axes de l'Institut Pascal : l’axe MMS (Mécanique, Matériaux et Structures) et l’axe PHOTON (Axe Photonique, Ondes, Nanomatériaux), cette thèse s’intègre parfaitement dans l’action transversale "Matériaux et Modélisations multi-échelles" du laboratoire. La première partie de ce travail s'appuie sur un système expérimental mis au point par une équipe américaine [Chang_10] qui permet la mesure sans contact du pH d'une solution en exploitant les caractéristiques photoniques du système. Ce système est composé d'un réseau d'hydrogel fixé sur un substrat rigide. Un modèle numérique est développé dans le but de simuler le fonctionnement de l'ensemble et d'optimiser le réseau d'hydrogel en vue d'applications dans le domaine médical. La seconde partie de ce travail concerne le développement d'une théorie sur le comportement mécanique de polymères sensibles à la lumière. L'objectif est d'établir une relation liant la déformation du matériau à l’intensité lumineuse. Les résultats obtenus sont comparés avec les résultats expérimentaux issus de la littérature. L'influence des interactions entre les molécules d'azobenzènes sur la déformation du matériau est étudiée. / Many engineering applications involve stimuli-responsive materials that can change their shape under the action of an external stimulus. It is in this context that this project takes place. Thanks to a multidisciplinary environment with the association of two lines of research of the Institut Pascal: the Mechanical area (Mechanic, Materials and structure) and the Photonic area (Nanostructures and Nanophotonics), this PhD perfectly fits with the “Materials and multi-scale Modeling” transversal action of the laboratory. The first part of this work relies on an experimental system developed by an American team [Chang_10] which allows to measure the pH of a solution without contact, making use of its photonic characteristics. This system is composed of a hydrogel network fixed on a rigid substract. A numerical model is developed in order to simulate its behavior and optimize the hydrogel network with a view to applications in the medical domain. The second part of this PhD is related to the development of a theory on the mechanical behavior of photo-sensitive polymers. The aim is to establish a link between the material deformation and the light intensity. The obtained results are compared to experimental ones from literature. The interaction influence of the azobenzenes molecules on the material strain is studied.
9

Development of an artificial muscle for a soft robotic hand prosthesis / Développement d'un muscle artificiel pour une prothèse de main robotique souple

Ramirez Arias, José Luis 09 December 2016 (has links)
Le thème central de cette thèse est la conception d’actionneurs doux à partir de matériaux intelligents et d’une prothèse de main robotique souple. Notre approche prends en compte les différents points qui peuvent influer sur le développement d’une stratégie d’actionnement ou d’un muscle artificiel : i) Les mécanismes et la fonctionnalité de la main humaine afin d’identifier les exigences fonctionnelles pour une prothèse de main robotique en matière de préhension. ii) L’analyse et l’amélioration des mécanismes de la main robotique pour intégrer un comportement souple dans la prothèse. iii) L’évaluation expérimentale de la prothèse de main robotique afin d’identifier les spécifications du système d’actionnement nécessaire au fonctionnement cinématique et dynamique du robot. iv) Le développement et la modélisation d’une stratégie d’actionnement utilisant des matériaux intelligents.Ces points sont abordés successivement dans les 4 chapitres de cette thèse1. Analyse du mouvement de la main humaine pour l’identification des exigences technologiques pour la prothèse de main robotique.2. Conception et modélisation de la prothèse de main robotique à comportement souple.3. Evaluation mécatronique de la prothèse de main.4. Conception d’un muscle artificiel basé sur des matériaux intelligents. / In the field of robotic hand prosthesis, the use of smart and soft materials is helpful in improving flexibility, usability, and adaptability of the robots, which simplify daily living activities of prosthesis users. However, regarding the smart materials for artificial muscles, technologies are considered to be far from implementation in anthropomorphic robotic hands. Therefore, the target of this thesis dissertation is to reduce the gap between smart material technologies and robotic hand prosthesis. Five central axes address the problem: i)identification of useful grasping gestures and reformulation of the robotic hand mechanism, ii) analysis of human muscle behavior to mimic human grasping capabilities, iii) modeling robot using the hybrid model DHKK-SRQ for the kinematics and the virtual works principle for dynamics, iv) definition of actuation requirements considering the synergy between prehension conditions and robot mechanism, and v) development of a smart material based actuation system.This topics are addressed in four chapters:1. Human hand movement analysis toward the hand prosthesis requirements2. Design and modeling of the soft robotic hand ProMain-I3. Mechatronic assessment of Prosthetic hand4. Development of an artificial muscle based on smart materials
10

Distributed shunted piezoelectric cells for vibroacoustic interface optimization / Distribution de cellules piézoélectriques semi-actives pour l'optimisation d'interfaces vibroacoustiquesDistributed shunted piezoelectric cells for vibroacoustical interfaces optimization

Tateo, Flaviano 19 December 2013 (has links)
Le domaine des matériaux intelligents et des structures adaptatives constitue un domaine de recherche consacré à la conception de structures architecturées ayant la faculté de modifier leur comportement en réponse à un stimulus externe. Le travail proposé dans cette thèse porte sur l’analyse et la conception d’un système pour le contrôle vibroacoustique adaptatif. Il s’attache à la conception d’une interface active faite de transducteurs piézo-électriques disposés en réseau bidimensionnel. Chaque transducteur est shunté individuellement par un circuit électronique externe synthétisant une capacité négative. Cette stratégie de contrôle se base sur le couplage multipysique entre la plaque et les circuit électroniques mis en communication et permet de contrôler les ondes se propageant au sein de la structure. Le dispositif ainsi créé est qualifié de métacomposite. La performance du metacomposite a été évaluée par le biais de nombreux essais numériques et expérimentales. Du point de vue modélisation, l’analyse a été réalisée à l’aide du théorème de Bloch adapté aux systèmes piézo-élastiques à deux dimensions. Par la suite, une procédure d’optimisation a été utilisée dans le but de sélectionner les paramètres de shunt électrique les plus appropriés.Un prototype du guide d’ondes a été fabriqué et testé. Les résultats montrent clairement que ce dispositif permet de modifier les propriétés vibratoires de la structure porteuse, que ce soit en terme d’atténuation ou de trasmission. Enfin, un modèle éléments finis de la plaque a été utiliser afin d’évaluer la robustesse de la stratégie de contrôle proposée vis-à-vis d’une modification des paramètres du circuit, de la topologie del’interface active ou des propriétés de la plaque contrôlée. / Smart materials is an active research area devoted to the design of structured materials showingphysical properties that can be modified in response to an external stimulus.This study focuses on the analysis and design of adaptive system for vibroacoustic control. Theresearch investigates the design of a active interface made of piezoelectric transducers arranged ina two-dimensional lattice. Each transducer is individually shunted to an external electric circuitsynthesizing a negative capacitance effect. It allows to control waves propagating inside a structuretaking advantage of the multi-field coupling between the structural plate and the electrical circuitsshunting the piezoelectric patches.The performance of the metacomposite has been evaluated through numerous numerical andexperimental tests. The smart wave-guide has been analyzed by using the Bloch theorem appliedto two-dimensional piezo-elastic systems. Subsequently an optimization procedure has been usedwith the purpose to select the most appropriate set of circuit’s parameters.A prototype of the smart waveguide has been manufactured and tested. The results results clearlyshow the filtering and attenuating capabilities of this device.Finally a finite element model of the finite extent smart plate has been considered in order toasses the robustness of the proposed control strategy respect to a modification of the circuit’sparameters, the topology of the active interface and the properties of the controlled plate.A brief review conclude the work delineating which aspects of the design should be modified inorder to obtain a device suitable for industrial applications.

Page generated in 0.0825 seconds