• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 57
  • 11
  • 7
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 107
  • 107
  • 107
  • 43
  • 21
  • 21
  • 19
  • 12
  • 12
  • 11
  • 11
  • 10
  • 10
  • 9
  • 8
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
91

Fe-based composite materials with advanced mechanical properties

Werniewicz, Katarzyna 07 May 2010 (has links)
In this study a series of novel Fe-based materials derived from a bulk metallic glass-forming composition was investigated to improve the ductility of this high-strength glassy alloy. The interplay between the factors chemistry, structure and resulting mechanical properties was analyzed in detail. It has been recognized that subtle modifications of the chemical composition (carbon addition) lead to appreciable changes in the phase formation, which occurs upon solidification (from a single-phase structure to composite materials). As a consequence, significant differences in the mechanical response of the particular samples have been observed. The materials developed here were fabricated by centrifugal casting. To explore the structure features of the as-cast cylinders, manifold experimental techniques (X-ray diffraction, optical, as well as electron microscopy) were employed. The occurrence of the numerous reflections on the X-ray diffraction patterns has confirmed the crystalline nature of the studied Fe-based alloy systems. The subsequent extensive research on their deformation behavior (Vickers hardness and room temperature compression tests) has revealed that, although the glass-forming ability of the investigated compositions is not high enough to obtain a glassy phase as a product of casting, excellent mechanical characteristics (high strength - comparable to that of the reference bulk metallic glass (BMG) - associated with good ductility) were achieved for the “composite-like” alloys. In contrast, the single phase cylinders, subjected to compressive loading, manifested an amazing capacity for plastic deformation – no failure occurred. The fracture motives developed during deformation of the “composite-structured” samples were studied by scanning electron microscopy. The main emphasis has been put on understanding the mechanisms of crack propagation. Owing to the structural complexity of the deformed samples, it was crucial to elucidate the properties of the individual compounds. Based on the obtained results it was concluded that the coexistence of a soft f.c.c. γ-Fe phase in combination with a hard complex matrix is responsible for the outstanding mechanical response of the tested composites. While the soft particles of an austenite contribute to the ductility (they hinder the crack propagation and hence, cause unequivocal strain-hardening), the hard constituents of the matrix phase yield the strength.
92

Study of Mechanical Performance of Stent Implants Using Theoretical and Numerical Approach

Yang, Hua, (Mechanical engineer) 08 1900 (has links)
The coronary heart disease kills more than 350,000 persons/year and it costs $108.9 billion for the United States each year, in spite of significant advancements in clinical care and education for public, cardiovascular diseases (CVD) are leading cause of death and disability to the nation. A cardiovascular disease involves mainly heart or blood vessels (arteries, veins and capillaries) or both, and then mainly occurs in selected regions and affects heart, brain, kidney and peripheral arteries. As a surgical interventions, stent implantation is deployed to cure or ameliorate the disease. However, the high failure rate of stents used in patients with peripheral artery diseases has lead researchers to give special attention towards analyzing stent structure and characteristics. In this research, the mechanical properties of a stent based on the rhombus structure were analyzed and verified by means of analytical and numerical approaches. Theoretical model based on the beam theory were developed and numerical models were used to analyze the response of these structures under various and complex loading conditions. Moreover, the analysis of the stent inflation involves a model with large deformations and large strains, nonlinear material properties need to be considered to accurately capture the deformation process. The maximum stress values were found to occur in localized regions of the stent. These regions were generally found along the inner radii of each of the connected links connecting each of the longitudinal struts. Stress values throughout the whole stent were typically much lower. The peak engineering stress values were found to be less than the material ultimate strength (limit stress 515Mpa), indicating a safe stent design throughout expansion range. Lastly, the rheological behavior of blood can be quantified by non-Newtonian viscosity. Carreau model is introduced and simulates the situation in the artery, then the available shear stress in the model would help to the future analysis in the contact analysis of stent and the artery.
93

Quasi-static mechanical properties of treated and untreated sisal fibre reinforced epoxy resin composites

Webo, Wilson Wachuli 15 December 2017 (has links)
M. Tech. (Department of Mechanical Engineering, Faculty of Engineering and Technology), Vaal University of Technology. / Sisal is a vegetable fibre extracted from the leaves of Agave Sisalana. The fibre is long, bold and creamy white in colour besides being exceptionally strong. It can be used for making agricultural and parcelling twines of various kinds as well as ropes, sacks, carpet and upholstery. The primary purpose of this research was to study and evaluate the use of sisal as a reinforcing fibre in both treated and untreated forms with epoxy resin matrices. The casting process employed during the composite production was the the vacuum infusion. The effects of both the treated sisal fibre-epoxy resin composites and the untreated sisal fibre-epoxy resin composites on the tensile strength and stiffness, flexural strength and stiffness, impact toughness, shear strength, compression strength and hardness were evaluated. Finally, the occurrence of transverse matrix fracture and fibre pull-out were also studied. It was found that the quasi-static mechanical properties of both the treated sisal fibre-epoxy resin composites and the untreated sisal fibre-epoxy resin composites improved with increases in reinforcement weight fractions. Further, fibre surface treatment on the sisal fibres and the attendant increase in the interfacial bond also resulted into improved quasi-static mechanical properties of the treated sisal fibre-epoxy resin composites when compared to untreated sisal fibre-epoxy resin composites.
94

Characterization and Analysis of Damage Progression in Non-Traditional Composite Laminates With Circular Holes

Treasurer, Paul James 20 November 2006 (has links)
Carbon Fiber / Epoxy Laminates are increasingly being used in the primary structure of aircraft. To make effective use these materials, it is necessary to consider the ability of a laminate to resist damage, as well as material strength and stiffness. A possible means for improving damage tolerance is the use of non-traditional composite laminates, in which the longitudinal 0 plies are replaced with 5 or 10 plies. The main objectives of this collaborative Georgia Tech / Boeing research was the characterization of these non-traditional laminates, and the determination of appropriate lamina-level analytical techniques that are capable of predicting the changes caused by the use of slightly off-axis longitudinal plies. A quasi-isotropic [45/90/-45/theta/45/90/-45/-theta]s and hard [45/theta/-45/theta/90/45]s lay-up, where theta =0,5 or 10, were tested in open hole tension, filled hole tension, open hole compression, single shear bearing, and unnotched tension. These coupon level tests illustrated the effects of lay-up, notch constraint, and load type on traditional and non-traditional laminates. Die penetrant enhanced in-situ radiography was performed to determine the extent of damage suppression. The use of non-traditional laminates was found to reduce longitudinal ply cracking and delamination, with significant effect on the stress distribution around the notch. The use of non-traditional laminates also resulted in a 15%-20% improvement in bearing strength of the traditional laminates. Several predictive techniques were implemented to evaluate their ability to predict the effect of slight changes in ply orientations. A progressive damage model was written to compare Tsai-Wu, Hashin, and Maximum Stress unnotched strength criterion. Additionally, several semi-empirical failure theories for notched strength prediction were compared with linear and bi-linear cohesive zone models to determine applicability to non-traditional laminates.
95

Optimal design of Orthotropic Piezoelectric membranes and plates using particle swarms

Joubert, Matthew James Stuart 04 1900 (has links)
Thesis (MEng)--Stellenbosch University, 2014. / ENGLISH ABSTRACT: Over the past 50 years smart materials have made their appearance in many structures. The thermopiezoelectric ceramic is one of these smart materials. When thermal e ects are considered negligible, then the materials are classified as piezo-ceramic and piezoelectric materials. These so called piezo-ceramics are used as actuator and sensor components in many structures. The use of these components with composite materials is significant due to their application in the aerospace and aeronautics fields. The interaction that the piezoelectric material has with a composite body can be improved in order to reduce the energy requirement of the material for deformation. An objective in the optimisation of composite material structures is to minimise compliance or maximise sti ness uT f, with the laminate ply orientations as design variables, where u and f are displacement and force vectors, respectively. Here, the objective is not the maximisation of sti ness but the maximisation of compliance, with typical constraints being failure criteria. These failure criteria can include theories such as the maximum principle stress, the Tsai-Hill or Tsai-Wu failure theories. The compliance is maximised to accentuate any piezoelectric movement and is for theoretical treatment only. Piezoelectric materials once polarized the materials becomes quasi-isotropic. The piezoelectric materials are isotropic in the plane normal to the direction of the voltage being applied and have altered properties normal to this plane. This change in the material properties can be exploited so that the layup can be altered in orientation to improve performance. The idea is to improve the mechanical capabilities of the structure subject to an electrical input or vice versa. In the works by both Carrera et al. and Piefort, First Order Shear Deformation Theory (FSDT) is used in finite element analysis to characterise the structural and electrical behaviour of a plate or shell. FSDT, also known as the Mindlin-Reissner theory, is a plate bending theory that assumes a transverse shear distribution through the thickness of the plate. This theory is considered an improvement on the standard theories such as the Kircho or Timoshenko theories. Many optimisation techniques exist and are classed as either being direct search or gradient based methods. Particle Swarm Optimisation (PSO) is a direct search method. It mimics the behaviour of a flock of birds or school of fish in their attempt to find food. The PSO’s mathematical statement characterises a set of initial unknown particles within a designated search space that are compared to a set of local best particles and a single global best particle. This comparison is used to update the swarm each run cycle. Regression is a procedure whereby a set of testing data is used to fit a pseudo-function that represents the form the data should take in practice. The aim of this work is to optimise the piezoelectric-composite layer interaction to improve the overall compliance of a structure. Extensive modelling is performed and tested with peer reviewed literature to demonstrate its accuracy. / AFRIKAANSE OPSOMMING: Oor die afgelope 50 jaar het slim materiale hulle verskyning gemaak in verskeie strukture. Termopiezo-elektriese keramieke is een van hierdie nuwe materiale. Wanneer termiese e ekte onbeduidend is, word hierdie materiale as piezo-elektriese materiale geklassifiseer. Hierdie sogenaamde piezo-keramieke word gebruik as aandrywers en sensoriese onderdele in verskeie strukture. Die kombinasie van hierdie onderdele met saamgestelde materiale het belangrike toepassings in die ruimte- en lugvaartkunde. Die interaksie van die piezo-elektriese materiale met die saamgestelde materiaal strukture kan verbeter word om die energie-vereistes van die materiaal vir vervorming te verminder. ’n Tipiese doel in die optimering van saamgestelde materiaalstrukture is om styfheid uT f te maksimeer met die gelamineerde laag-oriëntasies as ontwerpsveranderlikes, waar u en f onderskeidelik verplasing en kragvektor voorstel. In teenstelling met die optimering van die samestelling wat voorheen gedoen is, is die doel hier nie die maksimering van styfheid nie, maar die minimering van styfheid, met falingskriteria as tipiese beperkings. Die falingskriteria sluit die volgende in: die maksimum spanningsteorie, en die Tsai-Hill of Tsai-Wu falingsteorieë. Die styfheid word geminimeer om piezo-elektriese verplasing te versterk, maar word hierin net teoreties bekyk. Sodra piezo-elektriese materiale gepolariseer word, word hulle quasi-isotropies. Die piezoelektriese materiale is isotropies in die vlak gelyk aan die rigting van die stroomspanning wat daarop toegepas word en het ander eienskappe normaal tot die vlak. Die verandering in die materiaal se eienskappe kan gebruik word sodat beide die saamgestelde materiaal en die piezoelektriese laag se oriëntasie aangepas kan word vir verbeterde werkverrigting. Die idee is om die meganiese vermoëns te verbeter van ’n struktuur wat onderwerp word aan ’n elektriese inset of vice versa. In die literatuur van beide Carrera et al. en Piefort word Eerste Orde Skuifvervormings Teorie (EOST) gebruik in eindige element analises om die strukturele en elektriese gedrag van ’n plaat of dop te karakteriseer. EOST, ook bekend as Mindlin-Reissner teorie, is ’n plaat buigings-teorie wat ’n dwarsvervormingverspreiding aanneem deur die dikte van die plaat. Hierdie teorie word gesien as ’n verbetering op die standaard teorieë soos bv. Kircho of Timoshenko se teorieë. Daar bestaan baie optimeringstegnieke wat geklassifiseer word as ’direkte soek’ of ’hellinggebaseerde’ metodes. Partikel swerm-optimering (PSO) is ’n direkte soekmetode. Dit boots die gedrag van ’n swerm voëls of ’n skool visse in hulle poging om kos te vind, na. PSO se wiskundige stelling karakteriseer ’n aanvanklike stel onbekende partikels binne ’n afgebakende soekgebied wat vergelyk word met ’n stel van die beste plaaslike partikels sowel as ’n enkele beste globale partikel. Die vergelykings word gebruik om die swerm met elke siklus op te dateer. Regressie is ’n metode waarin toetsdata gebruik word om ’n benaderde funksie te konstrueer wat ongeveer voorspel hoe die regte funksie lyk. Die doel van hierdie werk is om die piezoelektriese saamgestelde laag te optimeer en die interaksie van die totale gedrag van die struktuur te verbeter. Uitgebreide modellering word uitgevoer en getoets met eweknie-beoordeelde literatuur om die akkuraatheid en korrektheid te bewys.
96

Optimization of mechanical properties and manufacturing techniques to enable shape-memory polymer processing

Voit, Walter Everett 20 November 2009 (has links)
This research investigates the synthesis and manufacture of shape-memory polymer (SMP) systems for use in biomedical and commodity applications. The research centers on improving the mechanical properties of thermoset acrylate copolymers with memory properties at reasonable cost through various design and manufacturing techniques: high-strain polymer synthesis and radiation crosslinking. The research assesses combinations of linear monomers and a low density of crosslinker to characterize new functional materials and optimize emerging mechanical properties such as the glass transition temperature (Tg) and rubbery modulus (ER). Exploring materials with large recoverable strains, a model copolymer of photo-polymerized methyl acrylate (MA), isobornyl acrylate and crosslinker bisphenol A ethoxylate dimethacrylate was shown to strain above 800%, twice the previously published value for SMPs, and recover fully. In the quest to maximize fully recoverable strains, a new hybrid molecule nicknamed Xini, which serves as both an initiator and a crosslinker, was also theorized, synthesized, polymerized into SMP networks and characterized. In the past, thermoset SMPs were made into complex shapes using expensive top-down techniques. A block of polymer was made and custom machining was required to craft complex parts. This prohibited devices in cost-competitive commodity application spaces. This research has proposed and validated a new method for accurately tuning the thermomechanical properties of network acrylates with shape-memory properties: Mnemosynation, eponymously named for the Greek goddess of memory. This novel manufacturing process imparts long term 'memory' on an otherwise amorphous thermoplastic material utilizing radiation-induced covalent crosslinking, and can be likened to Vulcanization, which imparts strength on natural rubber utilizing sulfur crosslinks. Adjustment of ER in the range from below 1 MPa to above 13 MPa has been demonstrated. ER was tailored by varying both radiation dose between 5 and 300 kGy and crosslinker concentration between 1.00 and 25.0 wt%. Tg manipulation was demonstrated between 23 ˚C and 70 ˚C. Mnemosynation combines advances in radiation grafting and acrylic SMP synthesis to enable both traditional plastics processing (blow molding, injection molding, etc.) and control of thermoset shape-memory properties. Combining advances in both high strain polymer synthesis and radiation crosslinking, a new paradigm in SMP composites manufacture-namely, that materials can be designed to enhance strain capacity at moderate stress, rather than maximum strength-was established. Various fibers with very different mechanical properties were impregnated with SMPs and thermo-mechanically assessed to develop an understanding of the technical parameters necessary to craft self-adjusting, multi-actuated, SMP-fiber composite orthopedic casts. This exploration syncs with the overarching aim of the research, which is to understand the fundamental scientific drivers necessary to enable new devices mass-manufactured from acrylate copolymers and optimize their emerging mechanical properties.
97

Experimental nanomechanics of 1D nanostructures

Pant, Bhaskar 02 July 2010 (has links)
Nanotechnology offers great promise for the development of nanodevices. Hence it becomes important to study the mechanical behavior of nanostructures for their use in such systems. MEMS (Micro ElectroMechanical Systems) provide an effective and precise method for testing nanostructures. Consequently this study focuses on the development of a MEMS thermal nanotensile tester to investigate the mechanical behavior of one-dimensional nanostructures. Extensive characterization of these MEMS devices (structural, electrical and thermal behavior) was performed using experimental as well as finite element methods. Tensile testing of nanostructures requires manipulation of individual nanostructures on the MEMS device. The study involves the development of an efficient methodology for the manipulation of nanowires and nanobeams for nanoscale testing. Furthermore, two different sensing schemes for the developed devices, namely capacitive and resistive, have been extensively investigated and the advantages and various issues related to both have been discussed. Nanocrystalline (nc) Ni nanobeams (typical dimensions of 500 nm x 200 nm x 20 µm) have been tested to failure using the MEMS devices. Improvements in the design for the MEMS nanotensile tester have been suggested to significantly enhance the device performance and to resolve the various issues involved with nano scale tests. Differential capacitive sensing for stress-strain measurements has been suggested to improve the accuracy of strain measurements.
98

Dependence of physical and mechanical properties on polymer architecture for model polymer networks

Guo, Ruilan 27 February 2008 (has links)
Effect of architecture at nanoscale on the macroscopic properties of polymer materials has long been a field of major interest, as evidenced by inhomogeneities in networks, multimodal network topologies, etc. The primary purpose of this research is to establish the architecture-property relationship of polymer networks by studying the physical and mechanical responses of a series of topologically different PTHF networks. Monodispersed allyl-terminated PTHF precursors were synthesized through ¡°living¡± cationic polymerization and functional end-capping. Model networks of various crosslink densities and inhomogeneities levels (unimodal, bimodal and clustered) were prepared by endlinking precursors via thiol-ene reaction. Thermal characteristics, i.e., glass transition, melting point, and heat of fusion, of model PTHF networks were investigated as functions of crosslink density and inhomogeneities, which showed different dependence on these two architectural parameters. Study of freezing point depression (FPD) of solvent confined in swollen networks indicated that the size of solvent microcrystals is comparable to the mesh size formed by intercrosslink chains depending on crosslink density and inhomogeneities. Relationship between crystal size and FPD provided a good reflection of the existing architecture facts in the networks. Mechanical responses of elastic chains to uniaxial strains were studied through SANS. Spatial inhomogeneities in bimodal and clustered networks gave rise to ¡°abnormal butterfly patterns¡±, which became more pronounced as elongation ratio increases. Radii of gyration of chains were analyzed at directions parallel and perpendicular to stretching axis. Dependence of Rg on ¦Ë was compared to three rubber elasticity models and the molecular deformation mechanisms for unimodal, bimodal and clustered networks were explored. The thesis focused its last part on the investigation of evolution of free volume distribution of linear polymer (PE) subjected to uniaxial strain at various temperatures using a combination of MD, hard sphere probe method and Voronoi tessellation. Combined effects of temperature and strain on free volume were studied and mechanism of formation of large and ellipsoidal free volume voids was explored.
99

A covariant 4D formalism to establish constitutive models : from thermodynamics to numerical applications / Modèles covariants de comportement issus d'un formalisme 4D : de la thermodynamique aux applications numériques

Wang, Mingchuan 21 September 2016 (has links)
L’objectif de ce travail est d’établir des modèles de comportement mécaniques pour les matériaux en grandes déformations. Au lieu des approches classiques en 3D dans lesquelles la notion d'objectivité est ambigüe et pour lesquelles différentes dérivées objectives sont utilisées arbitrairement, le formalisme quadridimensionnel dérivé des théories de la Relativité est appliqué. En 4D, les deux aspects de la notion d’objectivité, l’indépendance du référentiel (ou covariance) et l’invariance à la superposition de mouvement de corps rigide, peuvent désormais être distinguées. En outre, l’utilisation du formalisme 4D assure la covariance des modèles. Pour les modèles incrémentaux, la dérivée de Lie est choisie permettant une variation totale par rapport au temps, tout en étant à la fois covariante et invariante à la superposition des mouvements de corps rigide. Dans ce formalisme 4D, nous proposons également un cadre thermodynamique en 4D pour développer des modèles de comportement en 4D tels que l’hyperélasticité, l’élasticité anisotrope, l’hypoélasticité et l’élastoplasticité. Ensuite, les projections en 3D sont obtenus à partir des modèles en 4D et étudiés en les testant sur des simulations numériques par éléments finis avec le logiciel Zset / The objective of this work is to establish mechanical constitutive models for materials undergoing large deformations. Instead of the classical 3D approaches in which the notion of objectivity is ambiguous and different objective transports may be arbitrarily used, the four-dimensional formalism derived from the theories of Relativity is applied. Within a 4D formalism, the two aspects of notion of objectivity: frame-indifference (or covariance) and invariance to the superposition of rigid body motions can now be distinguished. Besides, the use of this 4D formalism ensures the covariance of the models. For rate-form models, the Lie derivative is chosen as a total time derivative, which is also covariant and invariant to the superposition of rigid body motions. Within the 4D formalism, we also propose a framework using the 4D thermodynamic to develop 4D constitutive models for hyperelasticity, anisotropic elasticity, hypoelasticity and elastoplasticity. Then, 3D models are derived from 4D models and studied by applying them in numerical simulations with finite element methods using the software Zset
100

Modeling Lysis Dynamcis Of Pore Forming Toxins And Determination Of Mechanical Properties Of Soft Materials

Vaidyanathan, M S 11 1900 (has links) (PDF)
Pore forming toxins are known for their ability to efficiently form transmembrane pores which eventually leads to cell lysis. PFTs have potential applications in devel-oping novel drug and gene delivery strategies. Although structural aspects of many pore forming toxins have been studied, very little is known about the dynamics and subsequent rupture mechanisms. In the first part of the thesis, a combined experimental and modeling study to understand the lytic action of Cytolysin A (ClyA) toxins on red blood cells (RBCs) has been presented. Lysis experiments are carried out on a 1% suspension of RBCs for different initial toxin concentrations ranging from 100 – 500 ng/ml and the extent of lysis is monitored spectrophotometrically. Using a mean field approach, we propose a non – equilibrium adsorption-reaction model to quantify the rate of pore formation on the cell surface. By analysing the model in a pre-lysis regime, the number of pores per RBC to initiate rupture was found to lie between 400 and 800. The time constants for pore formation are estimated to lie between 1-25 s and monomer conformation time scales were found to be 2-4 times greater than the oligomerization times. Using this model, we are able to predict the extent of cell lysis as a function of the initial toxin concentration. Various kinetic models for oligomerization mechanism have been explored. Irreversible sequential kinetic model has the best agreement with the available experimental data. Subsequent to the mean field approach, a population balance model was also formulated. The mechanics of cell rupture due to pore formation is poorly understood. Efforts to address this issue are concerned with understanding the changes in the membrane mechanical properties such as the modulus and tension in the presence of pores. The second part of the thesis is concerned with using atomic force microscopy to measure the mechanical properties of cells. We explore the possibility of employing tapping mode AFM (TM-AFM) to obtain the elastic modulus of soft samples. The dynamics of TM-AFM is modelled to predict the elastic modulus of soft samples, and predict optimal cantilever stiffness for soft biological samples. From experiments using TM-AFM on Nylon-6,6 the elastic modulus is predicted to lie between 2 and 5 GPa. For materials having elastic moduli in the range of 1– 20 GPa, the cantilever stiffness from simulations is found to lie in the range of 1 – 50 N/m. For soft biological samples, whose elastic moduli are in the range of 10-1000 kPa, a narrower range of cantilever stiffness (0.1 – 0.6 N/m), should be used.

Page generated in 0.1206 seconds