Spelling suggestions: "subject:"amathematical enduction"" "subject:"amathematical conduction""
1 |
Growth in Students' Conceptions of Mathematical InductionGruver, John David 06 May 2010 (has links) (PDF)
While proof and reasoning lie at the core of mathematical practice, how students learn to reason formally and build convincing proofs continues to invite reflection and discussion. To add to this discussion I investigated how three students grew in their conceptions of mathematical induction. While each of the students in the study had different experiences and grew in different ways, the grounded axes (triggering events, personal questions about mathematics, and personal questions about a particular solution) highlighted patterns in the narratives and from these patterns a theoretical perspective emerged. Reflection, both on mathematics in general and about specific problems, was central to students' growth. The personal reflections of students and triggering events influenced each other in the following way. The questions students wondered about impacted which trigger stimulated growth, while triggers caused students to rethink assumptions and reflect on mathematics or specific problems. The reflections that allowed triggers to stimulate growth along with the reflections that were results of triggering events constitute an "investigative orientation." Each narrative reflects a different investigative orientation motivated by different personal needs. These investigative orientations affected what type of knowledge was constructed.
|
2 |
Aplicações do método de indução matemática à geometria / Applications of the mathematical induction method to geometryVELOZO NETO, Raimundo do Nascimento 01 June 2017 (has links)
Submitted by Rosivalda Pereira (mrs.pereira@ufma.br) on 2017-09-12T20:44:07Z
No. of bitstreams: 1
RaimundoVelozoNeto.pdf: 872870 bytes, checksum: ccaffc749ed9ed23b543712ba5273285 (MD5) / Made available in DSpace on 2017-09-12T20:44:07Z (GMT). No. of bitstreams: 1
RaimundoVelozoNeto.pdf: 872870 bytes, checksum: ccaffc749ed9ed23b543712ba5273285 (MD5)
Previous issue date: 2017-06-01 / This work deals with the Method of Mathematical Induction, in particular, its use with
a view to the solution of geometric problems. It initially some considerations are made
about the expression "inductive reasoning" whose it meaning, as appropriately must be
explained in the text, that differs from that of "mathematical induction". We prove the
proposition that guarantees the use of the method based on its foundation, namely the
axiom of mathematical induction (one of the postulates that characterize the natural
numbers). It exhibited some examples of its use of Algebra and the Theory of Numbers.
And then, some applications of the method of mathematical induction to the problems
of Geometry are explored to obtain a geometric measure in terms of another(s), either
for the demonstration of a proposition that insinuates itself true, or for the stages of
construction of a figure given / Este trabalho trata do Método de Indução Matemática, em especial, de seu uso com vistas
à solução de problemas geométricos. Inicialmente, são feitas algumas considerações acerca
da expressão "raciocínio indutivo", cujo sentido, conforme apropriadamente explicado no
texto, difere do de "indução matemática". É provada a proposição que garante o uso do
método com base em seu fundamento, a saber, o axioma de indução matemática (um
dos postulados que caracterizam os números naturais) e exibidos alguns exemplos de
sua utilização em Álgebra e Teoria dos Números. Em seguida, são exploradas algumas
aplicações do método de indução matemática à problemas de Geometria, seja para a
obtenção de uma medida geométrica em termos de outra(s), para a demonstração de uma
proposição que se insinua verdadeira, ou para a exibição das etapas de construção de uma
dada figura.
|
3 |
Princ?pio da Indu??o Matem?tica no Ensino M?dioNobrega, Luciano Xavier Gomes da 08 April 2013 (has links)
Made available in DSpace on 2014-12-17T15:27:45Z (GMT). No. of bitstreams: 1
LucianoXGN_DISSERT.pdf: 807577 bytes, checksum: 906f4b332a5302a928290cb0ddc72490 (MD5)
Previous issue date: 2013-04-08 / Coordena??o de Aperfei?oamento de Pessoal de N?vel Superior / We developed this dissertation aiming its in the process of teaching and learning of
the Principle of Mathematical Induction and we set our efforts so that the students of
the first year of the high school can assimilate the content having the knowledge seen
in the basic education as foreknowledge. With this, we seek to awake in the student
the interest on proofs, showing how much it s needed in examples that involve contents
that he is already seen / Desenvolvemos esta disserta??oo objetivando seu uso no processo de ensino e aprendizagem
do princ?pio da indu??oo matem?tica e direcionamos nossos esfor?os para que
os alunos do primeiro ano do ensino m?dio possam assimilar o conte?do tendo o conhecimento
visto na educa??o b?sica como pr?-requisito. Com isso, buscamos despertar
no aluno o interesse em demonstra??es, mostrando o quanto elas s?o necess?rias.
|
4 |
PrincÃpio da induÃÃo matemÃtica: fundamentaÃÃo teÃrica e aplicaÃÃes / Principle of mathematical induction: theoretical foundations and applicationsHudson de Souza FÃlix 05 March 2015 (has links)
CoordenaÃÃo de AperfeÃoamento de Pessoal de NÃvel Superior / O presente trabalho apresenta propriedades e problemas do ensino da matemÃtica que de alguma forma se demonstram ou podem ser resolvidas usando o princÃpio da induÃÃo matemÃtica. Com isso, buscamos despertar o aluno para a importÃncia da demonstraÃÃo em matemÃtica, saindo do conformismo de aceitar a qualquer fÃrmula de formataÃÃo intuitiva indexada ao nÃmeros naturais e partir para uma anÃlise matemÃtica mais refinada dos conceitos, propriedades e problemas que se apresentam na matemÃtica. / This paper presents properties and mathematics teaching issues that somehow show or can be resolved using the principle of mathematics induction. with this, we seek to awaken students to the importance of demonstration in mathematics , leaving the conformity to accept any intuitive formatting formula indexed to natural numbers and go for a more refined mathematical analysis of the concepts , properties and problems that arise in mathematics.
|
5 |
Teoria matemática implícita na geometria fractal: construindo fractais com a ferramenta computacional AsymptoteJerrimar Moraes de Araújo 03 December 2015 (has links)
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / O presente trabalho consiste em um relato sobre a origem da Geometria Fractal, tendo em destaque a figura de Benoît Mandelbrot, identificado como pioneiro nesta área, cujo fractal leva seu nome. Mostra os fractais pioneiros, assim como a construção destes através da ferramenta computacional "Asymptote". É necessário dizer que, a partir da construção destes, percebe-se, com facilidade um intenso uso de conteúdos presentes no currículo escolar do ensino básico, como por exemplo o cálculo de perímetro e de áreas de figuras planas, potenciação, problemas de contagens, entre outros, os quais podem ser abordados com o intuito de introduzir tal conteúdo ou mesmo aprofundá-lo. Por fim, faremos uso de Indução Matemática para demonstrar algumas destas fórmulas encontradas. / This work consists the historic report of the origin of Fractal Geometry, and highlighted the figure of Benoît Mandelbrot, identified as pioneer in this area, whose fractal bears his name. Shows the pioneers fractals, as well as the construction of these using the computational tool "Asymptote". It must be said that, from the construction of these, it is noted, easily a intense use of contents present in the curriculum of basic education, such as the calculation of perimeter and area of plane figures, potentiation, in counts problems, among others, they can be addressed in order to start the study of such content or to same deepen it. Finally, we will make use of Mathematical Induction to demonstrate some of the formulas found.
|
6 |
The Cauchy-Schwarz inequality : Proofs and applications in various spaces / Cauchy-Schwarz olikhet : Bevis och tillämpningar i olika rumWigren, Thomas January 2015 (has links)
We give some background information about the Cauchy-Schwarz inequality including its history. We then continue by providing a number of proofs for the inequality in its classical form using various proof techniques, including proofs without words. Next we build up the theory of inner product spaces from metric and normed spaces and show applications of the Cauchy-Schwarz inequality in each content, including the triangle inequality, Minkowski's inequality and Hölder's inequality. In the final part we present a few problems with solutions, some proved by the author and some by others.
|
7 |
UMA PROPOSTA DE ABORDAGEM AO PROBLEMA DE FLÁVIO JOSEFO APLICADA AO ENSINO MÉDIO / AN APPROACH PROPOSAL OF FLAVIO JOSE`S PROBLEM APPLIED TO HIGH SCHOOLSouza, Márcia Erondina Dias de 15 April 2013 (has links)
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / In this paper, we presents a didactic sequence of activities designed for a
group of students of high school, their age were about 15 and 18 years old, with the
main objective to study the problem proposed by the mathematician Flávio Josefo, in
mid-year 64. The legend tells that a group of rebels, including Flávio Josefo, was
trapped in a cave by the enemy army. Preferring the suicide to capture, the rebels
decided to form a circle and, counting over this, to kill each third person of the rest of
the group. Josefo was contrary of this suicide pact therefore, together with a friend,
calculated very quickly the appropriated positions that both should take in this circle
in order to get out of this terrible situation. To understand this solution, we propose, at
the first moment, a review about the numerical sequences, including the special
cases of arithmetic and geometric. Then, we introduce some notions about the de
recurrence relations and the Principle of Mathematical Induction, allowing a
generalization of concepts and results already known intuitively by the student group. / Neste trabalho, apresentamos uma sequência didática de atividades
elaboradas para um grupo de alunos do ensino médio, na faixa etária de 15 a 18
anos, tendo como principal objetivo estudar o problema proposto pelo matemático
Flávio Josefo, nos meados do ano 64. Conta a lenda que um grupo de rebeldes,
dentre eles Flávio Josefo, foi encurralado numa caverna pelo exército inimigo.
Preferindo o suicídio à captura, os rebeldes decidiram formar um círculo e, contando
ao longo deste, matar cada terceira pessoa restante do grupo. Josefo era contrário a
este pacto suicida e, por isso, juntamente com um amigo, calculou muito
rapidamente as posições adequadas que ambos deveriam tomar nesse círculo de
modo a saírem ilesos desta terrível situação. Para o entendimento desta solução
propomos, inicialmente, uma revisão sobre sequências numéricas, incluindo os
casos especiais de progressão aritmética e geométrica. Em seguida, introduzimos
algumas noções a respeito de relações de recorrência e do Princípio da Indução
Matemática, permitindo uma generalização dos conceitos e resultados já conhecidos
intuitivamente pelo grupo de alunos.
|
Page generated in 0.1187 seconds