• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 16
  • 9
  • 3
  • 2
  • 1
  • 1
  • Tagged with
  • 34
  • 34
  • 34
  • 16
  • 13
  • 10
  • 8
  • 8
  • 7
  • 7
  • 6
  • 6
  • 6
  • 6
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Relevante mathematische Kompetenzen von Ingenieurstudierenden im ersten Studienjahr - Ergebnisse einer empirischen Untersuchung

Lehmann, Malte 31 July 2018 (has links)
Fehlende Kompetenzen in Mathematik und Naturwissenschaften werden von Studierenden als ein Grund für den Studienabbruch in Ingenieurwissenschaften angegeben (Heublein et al., 2017). Welche Kompetenzen für Studierende zu Beginn des Ingenieurstudiums relevant sind, ist jedoch bisher wenig empirisch untersucht. Das Ziel der vorliegenden Studie ist, relevante mathematische Kompetenzen von Ingenieurstudierenden zu analysieren und dabei sowohl Wissensbestände als auch die Anwendung von Wissen und die Zusammenhänge zwischen beiden Bereichen zu berücksichtigen. Dazu wurde eine Studie im Mixed-Methods Design entwickelt. In dieser werden die Studierenden hinsichtlich ihrer Dispositionen in Mathematik und Physik zu Beginn des Studiums und am Ende des ersten Studienjahres mit quantitativen Methoden getestet. Zu diesen beiden und einem weiteren Zeitpunkt am Ende des ersten Semesters wurden zudem die situationsspezifischen Fähigkeiten bei der Bearbeitung von Mathematik- und Physikaufgaben mit Hilfe eines theoretischen Rahmens zum mathematischen Problemlösen mit qualitativen Methoden untersucht. Dieser Theorierahmen umfasste für die Mathematikaufgaben die Aspekte Heurismen (Bruder & Collet, 2011; Schoenfeld, 1980) und Problemlösephasen (Polya, 1957) sowie das Modell der Epistemic Games (Tuminaro, 2004) zur Analyse der Bearbeitung von Physikaufgaben. Die Ergebnisse zeigen Zusammenhänge zwischen mathematischen und physikali-schen Dispositionen. Zusätzlich wird die Bedeutung von Aspekten des Problemlösens deutlich, um die Prozesse bei den Bearbeitungen von Mathematik und Physikaufgaben im ersten Studienjahr zu analysieren. Auf Grundlage der qualitativen Beschreibungen konnten Cluster von Fällen von Studierenden gebildet werden. Mit Hilfe dieser Cluster zeigen sich Zusammenhänge zwischen den Dispositionen und situationsspezifischen Fähigkeiten bei den besonders leistungsstarken und leistungsschwachen Studierenden. / Missing competences in mathematics and sciences are cited by students as a reason for the drop-out in engineering sciences (Heublein et al., 2017). However, the competences that are relevant for students at the beginning of their engineering studies have so far not been investigated in an empirical way. The aim of this study is to analyse relevant mathematical competences of engineering students, taking into account both knowledge and the application of knowledge and the interrelationships between the two. A study in mixed method design was developed for this purpose. In this study, students are tested with regard to their dispositions in mathematics and physics at the beginning of their studies and at the end of the first year of their studies using quantitative methods. At these two points in time and a further time at the end of the first semester, the situation-specific skills in processing math and physics tasks were examined with the help of a theoretical framework for solving mathematical problems, using qualitative methods. This theoretical framework included for the mathematical tasks the aspects heuristics (Bruder & Collet, 2011; Schoenfeld, 1980) and problem solving phases (Polya, 1957) as well as the model of Epistemic Games (Tuminaro, 2004) for the analysis of the processing of physical tasks. The results show interrelationships between mathematical and physical dispositions. In addition, it became clear that there is a need of problem solving aspects in order to analyse the processes involved in the working on maths and physics tasks in the first year of studies. Based on the qualitative descriptions, clusters of student cases could be formed. These clusters show the interrelationships between dispositions and situation-specific skills of particularly high-performing and underperforming students.
32

Matemática e cotidiano : processos metacognitivos construídos por estudantes da EJA para resolver problemas matemáticos

Campos, Vanessa Graciela Souza 28 March 2017 (has links)
This study aimed on revealing which metacognitive strategies are constructed by EJA students, in the literacy phase, when solving mathematical problems and in what way the dialogue between these strategies interferes in their school performance. For this, the research was carried out through a pedagogical intervention in a class, whose teaching institution belongs to the S System, composed of eleven participants. The methodological approach of this study consists of the organized research-act with the following stages: observation, interviews, application of questionnaires, application of didactic sequences and preparation of field diary for data collection and analysis. The bibliographical incursion is reported in authors such as Flavell, Miller and Miller (1999); Ludovico et al. (2001); Portilho (2011); Locatelli (2014); Silva (2009); Souza (2009); Charlot (2000, 2005, 2013); Freire (2015); Dante (2010) who subsidized the interpretations of didactic phenomena occurring in the classroom, from the perspective of four categories: Mathematics in EJA, Mathematical Problem Solving, Metacognition and Relation with Knowing. The analysis of the data allowed to dissuade the mutual effects between the concept of Metacognition and the theory of Relation with Knowing, since both concepts approach the subject's gaze on himself and on knowledge. That is, the understanding of metacognitive processes favors students' learning, by being able to perceive what they know and how they learn, both individually and collectively in the classroom. Therefore, it was noticed that the solving of mathematical problems presents itself as a favorable methodology to this process, instigating the subjects to think about their own reasoning while they are working the activities proposed in the classes. It was also noted that the social and identity dimensions of the subjects studied, in their relationship with knowledge, permeate the whole conjuncture of the looking at oneself and other colleagues during the resolution of the proposed tasks: to think about the reason for their difficulties and / or Skills; To be admitted as a singular and social subject; Making comparisons with yourself and other colleagues; Dealing with their individuality and, at the same time, allowing the exchange of knowledge. / Este estudo objetivou desvelar quais estratégias metacognitivas são construídas por estudantes da EJA, em fase de letramento, ao resolver problemas matemáticos e de que maneira o diálogo entre essas estratégias interfere no seu desempenho escolar. Para tanto, a pesquisa foi realizada por meio de uma intervenção pedagógica em uma turma, cuja instituição de ensino pertence ao Sistema S, compondo-se de onze participantes. A abordagem metodológica deste estudo consiste no tipo pesquisa-ação organizada nas seguintes etapas: observação, entrevistas, aplicação de questionários, aplicação de sequências didáticas e elaboração de diário de campo para coleta e análise dos dados obtidos. A incursão bibliográfica reporta-se em autores como Flavell, Miller e Miller (1999); Ludovico et al (2001); Portilho (2011); Locatelli (2014); Silva (2009); Souza (2009); Charlot (2000, 2005, 2013); Freire (2015); Dante (2010) que subsidiaram as interpretações dos fenômenos didáticos ocorridos em sala de aula, sob a ótica de quatro categorias: Matemática na EJA, Resolução de Problemas Matemáticos, Metacognição e Relação com o Saber. A análise dos dados permitiu dessumir incidências mútuas entre o conceito de Metacognição e a teoria da Relação com o Saber, uma vez que ambos conceitos abordam o olhar do sujeito sobre si próprio e sobre o saber. Ou seja, a compreensão dos processos metacognitivos favorece a aprendizagem dos alunos, ao se sentirem capazes de perceber o que sabem e como aprendem, tanto de forma individual como coletiva em sala de aula. Para tanto, percebeu-se que a resolução de problemas matemáticos apresenta-se como metodologia favorável a esse processo, instigando os sujeitos a pensarem sobre seu próprio raciocínio enquanto estão trabalhando as atividades propostas nas aulas. Notou-se também que as dimensões social e identitária dos sujeitos pesquisados, na sua relação com o saber, permeiam toda a conjuntura do olhar para si e para os demais colegas durante a resolução das tarefas propostas: pensar no porquê de suas dificuldades e/ou habilidades; admitir-se enquanto sujeito singular e social; fazer comparativos consigo e com os demais colegas; lidar com sua individualidade e, ao mesmo tempo, permitir a troca de conhecimentos.
33

The development of mathematical problem solving skills of Grade 8 learners in a problem-centered teaching and learning environment at a secondary school in Gauteng / The development of mathematical problem solving skills of Grade eight learners in a problem-centered teaching and learning environment at a secondary school in Gauteng

Chirinda, Brantina 06 1900 (has links)
This mixed methods research design, which was modelled on the constructivist view of schooling, sets out to investigate the effect of developing mathematical problem solving skills of grade 8 learners on their performance and achievement in mathematics. To develop the mathematical problem solving skills of the experimental group, a problem-centred teaching and learning environment was created in which problem posing and solving were the key didactic mathematical activity. The effect of the intervention programme on the experimental group was compared with the control group by assessing learners’ problem solving processes, mathematical problem solving skills, reasoning and cognitive processes, performance and achievement in mathematics. Data were obtained through questionnaires, a mathematical problem solving skills inventory, direct participant observation and questioning, semi-structured interviews, learner journals, mathematical tasks, written work, pre- and post- multiple-choice and word-problem tests. Data analysis was largely done through descriptive analysis and the findings assisted the researcher to make recommendations and suggest areas that could require possible further research. / Mathematics Education / M. Ed. (Mathematical Education)
34

The development of mathematical problem solving skills of Grade 8 learners in a problem-centered teaching and learning environment at a secondary school in Gauteng / The development of mathematical problem solving skills of Grade eight learners in a problem-centered teaching and learning environment at a secondary school in Gauteng

Chirinda, Brantina 06 1900 (has links)
This mixed methods research design, which was modelled on the constructivist view of schooling, sets out to investigate the effect of developing mathematical problem solving skills of grade 8 learners on their performance and achievement in mathematics. To develop the mathematical problem solving skills of the experimental group, a problem-centred teaching and learning environment was created in which problem posing and solving were the key didactic mathematical activity. The effect of the intervention programme on the experimental group was compared with the control group by assessing learners’ problem solving processes, mathematical problem solving skills, reasoning and cognitive processes, performance and achievement in mathematics. Data were obtained through questionnaires, a mathematical problem solving skills inventory, direct participant observation and questioning, semi-structured interviews, learner journals, mathematical tasks, written work, pre- and post- multiple-choice and word-problem tests. Data analysis was largely done through descriptive analysis and the findings assisted the researcher to make recommendations and suggest areas that could require possible further research. / Mathematics Education / M. Ed. (Mathematical Education)

Page generated in 0.0948 seconds