Spelling suggestions: "subject:"1atrix converter."" "subject:"béatrix converter.""
1 |
Review of the state of the Art of modulation techniques and control strategies for matrix convertersEhlers, PJ, Richards, CG, Nicolae, DV, Monacelli, E, Hamam, Y 01 May 2008 (has links)
The reliability and stability of the Matrix Converter has improved during the last
years due to the enhanced control algorithms. The traditional direct transfer function control
mode has been replaced by more complex – digitally implemented control methodologies. These
methodologies allow for real time calculation of the optimal switching interval of each individual
switch of the matrix converter. These new switching algorithms allow optimal performances,
ensuring sinusoidal outputs at any desired power factor. This paper will first revise the underlying
theory of matrix converters, then review the various control limitations and finally review the
current control algorithms.
|
2 |
Capacitor-Less VAR Compensator Based on a Matrix ConverterBalakrishnan, Divya Rathna 2010 December 1900 (has links)
Reactive power, denoted as volt-ampere reactive (VARs), is fundamental to ac power systems and is due to the complex impedance of the loads and transmission lines. It has several undesirable consequences which include increased transmission loss, reduction of power transfer capability, and the potential for the onset of system-wide voltage instability, if not properly compensated and controlled. Reactive power compensation is a technique used to manage and control reactive power in the ac network by supplying or consuming VARs from points near the loads or along the transmission lines. Load compensation is aimed at applying power factor correction techniques directly at the loads by locally supplying VARs. Typical loads such as motors and other inductive devices operate with lagging power factor and consume VARs; compensation techniques have traditionally employed capacitor banks to supply the required VARs. However, capacitors are known to have reliability problems with both catastrophic failure modes and wear-out mechanisms. Thus, they require constant monitoring and periodic replacement, which greatly increases the cost of traditional load compensation techniques. This thesis proposes a reactive power load compensator that uses inductors (chokes) instead of capacitors to supply reactive power to support the load. Chokes are regarded as robust and rugged elements; but, they operate with lagging power factor and thus consume VARs instead of generating VARs like capacitors. A matrix converter interfaces the chokes to the ac network. The matrix converter is controlled using the Venturini modulation method which can enable the converter to exhibit a current phase reversal property. So, although the inductors draw lagging currents from the output of the converter, the converter actually draws leading currents from the ac network. Thus, with the proposed compensation technique, lagging power factor loads can be compensated without using capacitor banks.
The detailed operation of the matrix converter and the Venturini modulation method are examined in the thesis. The application of the converter to the proposed load compensation technique is analyzed. Simulations of the system in the MATLAB and PSIM environments are presented that support the analysis. A digital implementation of control signals for the converter is developed which demonstrates the practical feasibility of the proposed technique. The simulation and hardware results have shown the proposed compensator to be a promising and effective solution to the reliability issues of capacitor-based load-side VAR compensation techniques.
|
3 |
Soft switched high frequency ac-link converterBalakrishnan, Anand Kumar 15 May 2009 (has links)
Variable frequency drives typically have employed dc voltage or current links
for power distribution between the input and output converters and as a means to
temporarily store energy. The dc link based power conversion systems have several
inherent limitations. One of the important limitations is the high switching loss
and high device stress which occur during switching intervals. This severely reduces
the practical switching frequencies. Additionally, while the cost, size, and weight of
the basic voltage sourced PWM drive is attractive, difficulties with input harmonics,
output dV/dt and over-voltage, EMI/RFI, tripping with voltage sags, and other
problems significantly diminish the economic competiveness of these drives. Add-ons
are available to mitigate these problems, but may result in doubling or tripling the
total costs and losses, with accompanying large increases in volume and weight.
This research investigates the design, control, operation and efficiency calculation
of a new power converter topology for medium and high power ac-ac, ac-dc and
dc-ac applications. An ac-link formed by an inductor-capacitor pair replaces the
conventional dc-link. Each leg of the converter is formed by two bidirectional switches.
Power transfer from input to output is accomplished via a link inductor which is first
charged from the input phases, then discharged to the output phases with a precisely
controllable current PWM technique. Capacitance in parallel with the link inductor
produces low turn-off losses. Turn-on is always at zero voltage as each switch swings
from reverse to forward bias. Reverse recovery is with low dI/dt and also is buffered
due to the link capacitance.
|
4 |
Modulation and Control of Matrix Converter for Aerospace ApplicationKobravi, Keyhan 17 December 2012 (has links)
In the context of modern aircraft systems, a major challenge is power conversion to supply the aircraft's electrical nstruments. These instruments are energized through a
fixed-frequency internal power grid. In an aircraft, the available sources of energy are a set of variable-speed generators which provide variable-frequency ac voltages. Therefore, to energize the internal power grid of an aircraft, the variable-frequency ac voltages should be converted to a fixed-frequency ac voltage. As a result, an ac to ac power conversion is
required within an aircraft's power system.
This thesis develops a Matrix Converter to energize the aircraft's internal power grid. The Matrix Converter provides a direct ac to ac power conversion. A major challenge of designing Matrix Converters for aerospace applications is to minimize the volume and weight of the converter. These parameters are minimized by increasing the switching frequency of the converter.
To design a Matrix Converter operating at a high switching frequency, this thesis (i) develops a scheme to integrate fast semiconductor switches within the current available Matrix Converter topologies, i.e., MOSFET-based Matrix Converter, and (ii) develops a new modulation strategy for the Matrix Converter. This Matrix Converter and the new modulation strategy enables the operation of the converter at a switching-frequency of 40kHz. To provide a reliable source of energy, this thesis also develops a new methodology for robust control of Matrix Converter.
To verify the performance of the proposed MOSFET-based Matrix Converter, modulation strategy, and control design methodology, various simulation and experimental results are presented. The experimental results are obtained under operating condition present in an aircraft. The experimental results verify the proposed Matrix Converter provides a reliable power conversion
in an aircraft under extreme operating conditions. The results prove the superiority of the proposed Matrix Converter technology for ac to ac power conversion regarding the existing technologies of Matrix Converters.
|
5 |
Modulation and Control of Matrix Converter for Aerospace ApplicationKobravi, Keyhan 17 December 2012 (has links)
In the context of modern aircraft systems, a major challenge is power conversion to supply the aircraft's electrical nstruments. These instruments are energized through a
fixed-frequency internal power grid. In an aircraft, the available sources of energy are a set of variable-speed generators which provide variable-frequency ac voltages. Therefore, to energize the internal power grid of an aircraft, the variable-frequency ac voltages should be converted to a fixed-frequency ac voltage. As a result, an ac to ac power conversion is
required within an aircraft's power system.
This thesis develops a Matrix Converter to energize the aircraft's internal power grid. The Matrix Converter provides a direct ac to ac power conversion. A major challenge of designing Matrix Converters for aerospace applications is to minimize the volume and weight of the converter. These parameters are minimized by increasing the switching frequency of the converter.
To design a Matrix Converter operating at a high switching frequency, this thesis (i) develops a scheme to integrate fast semiconductor switches within the current available Matrix Converter topologies, i.e., MOSFET-based Matrix Converter, and (ii) develops a new modulation strategy for the Matrix Converter. This Matrix Converter and the new modulation strategy enables the operation of the converter at a switching-frequency of 40kHz. To provide a reliable source of energy, this thesis also develops a new methodology for robust control of Matrix Converter.
To verify the performance of the proposed MOSFET-based Matrix Converter, modulation strategy, and control design methodology, various simulation and experimental results are presented. The experimental results are obtained under operating condition present in an aircraft. The experimental results verify the proposed Matrix Converter provides a reliable power conversion
in an aircraft under extreme operating conditions. The results prove the superiority of the proposed Matrix Converter technology for ac to ac power conversion regarding the existing technologies of Matrix Converters.
|
6 |
DESIGN, OPERATION AND CONTROL OF SERIES-CONNECTED POWER CONVERTERS FOR OFFSHORE WIND PARKSGarces Ruiz, Alejandro January 2012 (has links)
OFFSHORE wind farms need to develop technologies that fulfill three main objectives:Efficiency, power density and reliability. The purpose of this thesisis to study an HVDC transmission system based on series connection of the turbineswhich theoretically meet these three objectives. A new topology of matrixconverter operated at high frequency is proposed. This converter is studied usingdifferent modulation algorithms. Simulation and experimental results demonstratedthat the converter can be operated as a current source converter with highefficiency. An optimal control based on a linear quadratic regulator is proposedto control the matrix converter as well as the converter placed on shore. Resultsdemonstrated the high performance of this type of control and its simplicity forimplementation. An stationary state study based on non-linear programming andMontecarlo simulation was carried out to determine the performance of the conceptfor long-term operation. Series connection is an efficient technology if and only ifthe differences in the effective wind velocity are small. This aspect limits the numberof wind turbines that can be connected in series, since a numerous number ofturbines will lead to high covariances in the distribution of the wind. A complementarystudy about active filter and reactive power compensation was carried outusing an optimization-based algorithm.
|
7 |
Modeling and Controller Design of a Wind Energy Conversion System Including a Matrix ConverterBarakati, Seyed Masoud January 2008 (has links)
In this thesis, a grid-connected wind-energy converter system including a matrix converter is proposed. The matrix converter, as a power electronic converter, is used to interface the induction generator with the grid and control the wind turbine shaft speed. At a given wind velocity, the mechanical power available from a wind turbine is a function of its shaft speed. Through the matrix converter, the terminal voltage and frequency of the induction generator is controlled, based on a constant V/f strategy, to adjust the turbine shaft speed and accordingly, control the active power injected into the grid to track maximum power for all wind velocities. The power factor at the interface with the grid is also controlled by the matrix converter to either ensure purely active power injection into the grid for optimal utilization of the installed wind turbine capacity or assist in regulation of voltage at the point of connection. Furthermore, the reactive power requirements of the induction generator are satisfied by the matrix converter to avoid use of self-excitation capacitors.
The thesis addresses two dynamic models: a comprehensive dynamic model for a matrix converter and an overall dynamical model for the proposed wind turbine system.
The developed matrix converter dynamic model is valid for both steady-state and transient analyses, and includes all required functions, i.e., control of the output voltage, output frequency, and input displacement power factor. The model is in the qdo reference frame for the matrix converter input and output voltage and current fundamental components. The validity of this model is confirmed by comparing the results obtained from the developed model and a simplified fundamental-frequency equivalent circuit-based model.
In developing the overall dynamic model of the proposed wind turbine system, individual models of the mechanical aerodynamic conversion, drive train, matrix converter, and squirrel-cage induction generator are developed and combined to enable steady-state and transient simulations of the overall system. In addition, the constraint constant V/f strategy is included in the final dynamic model. The model is intended to be useful for controller design purposes.
The dynamic behavior of the model is investigated by simulating the response of the overall model to step changes in selected input variables. Moreover, a linearized model of the system is developed at a typical operating point, and stability, controllability, and observability of the system are investigated.
Two control design methods are adopted for the design of the closed-loop controller: a state-feedback controller and an output feedback controller. The state-feedback controller is designed based on the Linear Quadratic method. An observer block is used to estimate the states in the state-feedback controller. Two other controllers based on transfer-function techniques and output feedback are developed for the wind turbine system.
Finally, a maximum power point tracking method, referred to as mechanical speed-sensorless power signal feedback, is developed for the wind turbine system under study to control the matrix converter control variables in order to capture the maximum wind energy without measuring the wind velocity or the turbine shaft speed.
|
8 |
Modeling and Controller Design of a Wind Energy Conversion System Including a Matrix ConverterBarakati, Seyed Masoud January 2008 (has links)
In this thesis, a grid-connected wind-energy converter system including a matrix converter is proposed. The matrix converter, as a power electronic converter, is used to interface the induction generator with the grid and control the wind turbine shaft speed. At a given wind velocity, the mechanical power available from a wind turbine is a function of its shaft speed. Through the matrix converter, the terminal voltage and frequency of the induction generator is controlled, based on a constant V/f strategy, to adjust the turbine shaft speed and accordingly, control the active power injected into the grid to track maximum power for all wind velocities. The power factor at the interface with the grid is also controlled by the matrix converter to either ensure purely active power injection into the grid for optimal utilization of the installed wind turbine capacity or assist in regulation of voltage at the point of connection. Furthermore, the reactive power requirements of the induction generator are satisfied by the matrix converter to avoid use of self-excitation capacitors.
The thesis addresses two dynamic models: a comprehensive dynamic model for a matrix converter and an overall dynamical model for the proposed wind turbine system.
The developed matrix converter dynamic model is valid for both steady-state and transient analyses, and includes all required functions, i.e., control of the output voltage, output frequency, and input displacement power factor. The model is in the qdo reference frame for the matrix converter input and output voltage and current fundamental components. The validity of this model is confirmed by comparing the results obtained from the developed model and a simplified fundamental-frequency equivalent circuit-based model.
In developing the overall dynamic model of the proposed wind turbine system, individual models of the mechanical aerodynamic conversion, drive train, matrix converter, and squirrel-cage induction generator are developed and combined to enable steady-state and transient simulations of the overall system. In addition, the constraint constant V/f strategy is included in the final dynamic model. The model is intended to be useful for controller design purposes.
The dynamic behavior of the model is investigated by simulating the response of the overall model to step changes in selected input variables. Moreover, a linearized model of the system is developed at a typical operating point, and stability, controllability, and observability of the system are investigated.
Two control design methods are adopted for the design of the closed-loop controller: a state-feedback controller and an output feedback controller. The state-feedback controller is designed based on the Linear Quadratic method. An observer block is used to estimate the states in the state-feedback controller. Two other controllers based on transfer-function techniques and output feedback are developed for the wind turbine system.
Finally, a maximum power point tracking method, referred to as mechanical speed-sensorless power signal feedback, is developed for the wind turbine system under study to control the matrix converter control variables in order to capture the maximum wind energy without measuring the wind velocity or the turbine shaft speed.
|
9 |
Analysis and design of matrix converters for adjustable speed drives and distributed power sourcesCha, Han Ju 15 November 2004 (has links)
Recently, matrix converter has received considerable interest as a viable alternative to the conventional back-to-back PWM (Pulse Width Modulation) converter in the ac/ac conversion. This direct ac/ac converter provides some attractive characteristics such as: inherent four-quadrant operation; absence of bulky dc-link electrolytic capacitors; clean input power characteristics and increased power density. However, industrial application of the converter is still limited because of some practical issues such as common mode voltage effects, high susceptibility to input power disturbances and low voltage transfer ratio. This dissertation proposes several new matrix converter topologies together with control strategies to provide a solution about the above issues.
In this dissertation, a new modulation method which reduces the common mode voltage at the matrix converter is first proposed. The new method utilizes the proper zero vector selection and placement within a sampling period and results in the reduction of the common mode voltage, square rms of ripple components of input current and switching losses.
Due to the absence of a dc-link, matrix converter powered ac drivers suffer from input voltage disturbances. This dissertation proposes a new ride-through approach to improve robustness for input voltage disturbances. The conventional matrix converter is modified with the addition of ride-through module and the add-on module provides ride-through capability for matrix converter fed adjustable speed drivers.
In order to increase the inherent low voltage transfer ratio of the matrix converter, a new three-phase high-frequency link matrix converter is proposed, where a dual bridge matrix converter is modified by adding a high-frequency transformer into dc-link. The new converter provides flexible voltage transfer ratio and galvanic isolation between input and output ac sources.
Finally, the matrix converter concept is extended to dc/ac conversion from ac/ac conversion. The new dc/ac direct converter consists of soft switching full bridge dc/dc converter and three phase voltage source inverter without dc link capacitors. Both converters are synchronized for zero current/voltage switching and result in higher efficiency and lower EMI (Electro Magnetic Interference) throughout the whole load range. Analysis, design example and experimental results are detailed for each proposed topology.
|
10 |
Smart matrix converter-based grid-connected photovoltaic system for mitigating current and voltage-related power quality issues on the low-voltage gridGeury, Thomas 20 January 2017 (has links)
The increasing penetration of distributed energy resources, in particular Photovoltaic (PV) production units, and the ever-growing use of power electronics-based equipment has led to specific concern about Power Quality (PQ) in the Low-Voltage (LV) grid. These include high- and low-order current harmonics as well as voltage distortion at the point of common coupling. Solutions to overcome these issues, meeting international grid codes, are being proposed in the context of smart energy management schemes.This work proposes a novel three-phase topology for a PV system with enhanced PQ mitigation functionality, tackling the corresponding control challenges.First, a single-stage current-source inverter PV system with active filtering capability is preferred to the more common two-stage voltage-source inverter topology with additional voltage-step-up converter. The system also guarantees a nearly unitary displacement power factor in the connection to the grid and allows for Maximum Power Point Tracking (MPPT) with direct control of the PV array power. The grid-synchronised dq-axis grid current references are generated for the mitigation of nonlinear load low-order current harmonics, without the need for additional measurements. Active damping is used to minimise grid-side filter losses and reduce high-order harmonics resulting from the converter switching.Results on a 500W laboratory prototype confirm that active damping reduces the switching harmonics in the grid currents and active filtering properly mitigates the low-order current harmonics. The MPPT algorithm works effectively for various irradiance variations. Second, a PV system with a novel Indirect Matrix Converter (IMC)-based unified power quality conditioner topology is developed for enhanced current and voltage compensation capability, with compactness and reliability advantages. PQ issues such as current harmonics, and voltage sags, swells, undervoltage and overvoltage are mitigated by the shunt and series converters, respectively.The more common Space Vector Modulation (SVM) method used in IMCs is developed for this specific topology. In particular, a new shunt converter modulation method is proposed to additionally control the PV array current with zero switching vectors, resulting in a specific switching sequence.A direct sliding mode control method is also studied separately for the shunt and series converters, so that the zero-vector modulation method of the shunt converter can be used, with no sensitive synchronisation of the switching signals; this contrasts with the SVM method. A new dc link voltage modulation method with 12 voltage zones, instead of 6, is proposed to help overcome the limitation in the choice of shunt converter switching vectors due to the positive dc link voltage constraint.Results are obtained for the direct method on a 1 kW laboratory prototype with optimised IMC dc link connection and alternative shunt converter switching transitions to guarantee a positive dc link voltage. Current and voltage compensation capabilities are confirmed by tests in various operating conditions. / Doctorat en Sciences de l'ingénieur et technologie / info:eu-repo/semantics/nonPublished
|
Page generated in 0.0876 seconds