• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 16
  • Tagged with
  • 16
  • 16
  • 13
  • 10
  • 9
  • 7
  • 6
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Modelos de matrizes aleatórias e integrais sobre Grupos de Lie

Xavier, Lucas Nixon Queiroz 10 August 2018 (has links)
Dissertação (mestrado)—Universidade de Brasília, Instituto de Física, Programa de Pós-Graduação em Física, 2018. / Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq). / Um estudo detalhado dos modelos de matrizes aleatórias como forma de aproximação da teoria das cordas bosônicas e da gravitação quântica em 2d é realizado. Diferentes métodos matemáticos para a resolução desses modelos, como a aproximação planar e o método dos polinômios ortogonais, são descritos, e os resultados são comparados com aqueles derivados das teorias contínuas. O problema da integração sobre o grupo de calibre U(N) é formulado e, como exemplo, a integral de Harish-Chandra-Itzykson-Zuber é resolvida. Um novo método de integração sobre variáveis angulares, introduzido recententemente na literatura, é revisado, visando aplicações futuras em teoria de campos não-comutativos. / The theory of random matrix models as a form of approximating bosonic string theory and 2d quantum gravity is reviewed. Some mathematical methods to solve matrix models, such as the planar approximation and the method of orthogonal polynomials are described, and the results obtained are compared to the ones which come from the continuum theories. The problem of integrating over the gauge group U(N) is formulated and, as an example, the Harish-Chandra-Itzykson-Zuber integral is calculated. A new method to integrate over angular variables that appeared recently in the literature is reviewed, with the future aim of applying it to non-commutative quantum field theory.
2

Estudo termodinâmico de sistemas quânticos caóticos via Teoria de Matrizes Aleatórias / Thermodynamic study of quantum chaotic system using Random Matrix Theory

Cavalcante, Eric Gomes Arrais 22 August 2016 (has links)
Submitted by Erika Demachki (erikademachki@gmail.com) on 2016-09-27T18:02:45Z No. of bitstreams: 2 Dissertação - Eric Gomes Arrais Cavalcante - 2016.pdf: 2072393 bytes, checksum: c41dbeb585036af1c9bb4448250b6edd (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) / Approved for entry into archive by Luciana Ferreira (lucgeral@gmail.com) on 2016-09-28T12:29:27Z (GMT) No. of bitstreams: 2 Dissertação - Eric Gomes Arrais Cavalcante - 2016.pdf: 2072393 bytes, checksum: c41dbeb585036af1c9bb4448250b6edd (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) / Made available in DSpace on 2016-09-28T12:29:27Z (GMT). No. of bitstreams: 2 Dissertação - Eric Gomes Arrais Cavalcante - 2016.pdf: 2072393 bytes, checksum: c41dbeb585036af1c9bb4448250b6edd (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) Previous issue date: 2016-08-22 / Conselho Nacional de Pesquisa e Desenvolvimento Científico e Tecnológico - CNPq / Results from classical Random Matrix Theory (RMT) are well recognized as a way to describe spectral statistical properties of classically chaotic quantum systems, such as the level spacing distribution. We investigate, both numerically and analytically, if RMT can be used, at least for some regimes, to predict the behavior of the statistics of work performed by quenching some external parameter dictating the dynamics of a quantum chaotic system. This is done by comparison of the characteristic function of work obtained numerically from a well known quantum chaotic system called Dicke Model and from matrices pertaining to one of the classical ensembles of RMT, namely GOE. We also show one analytical result for the RMT average of the characteristic function that holds in the limit of high temperatures. / É reconhecido que a teoria de matrizes aleatórias (RMT) é capaz de descrever corretamente o comportamento de propriedades estatísticas espectrais de sistemas quânticos classicamente caóticos, como, por exemplo, suas distribuições de espaçamento de níveis. Investigamos, tanto numericamente quanto analiticamente, se a RMT pode ser usada, ao menos em alguns regimes, para predizer o comportamento da estatística do trabalho realizado ao se realizar um quench sobre um parâmetro externo que dita a dinâmica de um sistema quântico caótico. Isso é feito através da comparação da função característica do trabalho obtida numericamente a partir de um sistema quântico caótico bem conhecido, chamado modelo de Dicke, com a obtida a partir de matrizes pertencentes a um dos ensembles clássicos da RMT, chamado GOE. Mostramos também um resultado analítico para a média RMT da função característica que é válida para o limite de altas temperaturas.
3

Sobre a termodinâmica dos espectros / On the spectrum thermodynamic

Carnovali Junior, Edelver 18 April 2008 (has links)
Três ensembles, respectivamente relacionados com as distribuições Gaussiana, Lognormal e de Levy, são abordados neste trabalho primordialmente do ponto de vista da termodinâmica de seus espectros. Novas expressões para as grandezas termodinâmicas sao encontradas para os ensembles de Stieltjes e de Bertuola-Pato, e a conexão destes com os ensembles Gaussianos e estabelecida. Esta tese também se compromete com a continuação do desenvolvimento e aprimorarão do ensemble generalizado de Bertuola-Pato, estendendo alguns resultados para os ensembles simplifico e unitário generalizados, alem do ortogonal generalizado já introduzido anteriormente por A. C. Bertuola e M. P. Pato. / Three ensembles, related to the Gaussian, the Lognormal and the L´evy distributions respectively, have been studied in this work and were investigated most of all in what concerns their spectral thermodynamics. New expressions for the thermodynamics quantities were found for the Stieltjes and the Bertuola-Pato ensembles, and the connection with the gaussian ensembles is established. This work concerned with the development continuity and with the improvement of Bertuola-Pato generalized ensemble, extending some of the results to the simplectic and unitary generalized ensembles, besides the orthogonal generalized ensemble introduced before by A. C. Bertuola and M. P. Pato.
4

Quebras de simetria em sistemas aleatórios pseudo-hermitianos / Symmetry Breaking in Pseudo-Hermitian Random Systems

Santos, Gabriel Marinello de Souza 27 November 2018 (has links)
Simetrias compõe parte integral da análise na Teoria das Matrizes Aleatórias (RMT). As simetrias de inversão temporal e rotacional são aspectos-chave do Ensemble Gaussiano Ortogonal (GOE), enquanto esta última é quebrada no Ensemble Gaussiano Simplético (GSE) e ambas são quebradas no Conjunto Unitário Gaussiano (GUE). Desde o final da década de 1990, o crescente interesse no campo dos sistemas quânticos PT-simétricos levou os pesquisadores a considerar o efeito, em matrizes aleatórias, dessa classe de simetrias, bem como simetrias pseudo-hermitianas. A principal questão a ser respondida pela pesquisa apresentada nesta tese é se a simetria PT ou, de forma mais geral, a pseudo-Hermiticidade implica alguma distribuição de probabilidade específica para os autovalores. Ou, em outras palavras, se há um aspecto comum transmitido por tal simetria que pode ser usada para modelar alguma classe particular de sistemas físicos. A abordagem inicial considerada consistiu na introdução de um conjunto pseudo-hermitiano, isospectral ao conjunto -Hermite, que apresentaria o tipo de quebra de realidade típico dos sistemas PT-simétricos. Nesse modelo, a primeira abordagem adotada foi a introdução de perturbações que quebraram a realidade dos espectros. Os resultados obtidos permitem concluir que a transformação em seu similar pseudo-hermitiano conduz a um sistema assintoticamente instável. Esse modelo foi extendido ao considerar um pseudo-hermitiano não positivo, que leva a uma quebra similar na realidade dos espectros. Este caso apresenta um comportamento mais próximo do típico dos sistemas PT-simétricos presentes na literatura. Um modelo denso geral baseado em projetores foi proposto, e duas realizações particulares deste modelo receberam atenção mais detalhada. O comportamento espectral também foi similar àquele típico da simetria PT para as duas realizações consideradas, e seus limites assintóticos foram conectados a conjuntos clássicos de teoria de matriz aleatória. Além disso, as propriedades de seus polinômios característicos médios foram obtidas e os limites assintóticos desses polinômios também foram considerados e relacionados a polinômios clássicos. O comportamento estatístico deste conjunto foi estudado e comparado com o destes polinômios. Impor a pseudo-Hermiticidade não parece implicar qualquer distribuição particular de autovalores, sendo a característica comum a quebra da realidade dos autovalores comumente encontrados na literatura de simetria PT. O resultado mais notável dos estudos apresentados nesta tese é o fato de que uma interação pseudo-hermitiana pode ser construída de tal forma que o comportamento espectral médio possa ser controlado calibrando-se o mecanismo de interação, bem como sua intensidade. / The role of symmetries is an integral part of the analysis in Random Matrix Theory (RMT). Time reversal and rotational symmetries are key aspects of the Gaussian Orthogonal Ensemble (GOE), whereas the latter is broken in the Gaussian Sympletic Ensemble (GSE) and both are broken in the Gaussian Unitary Ensemble (GUE). Since the late 1990s, growing interest in the field of PT symmetric quantum systems has led researchers to consider the effect, in random matrices, of this class of symmetries, as well as that of pseudo-Hermitian symmetries. The primary question to be answered by the research presented in this thesis is whether PT-symmetry or, more generally, pseudo-Hermiticity implies some specific probability distribution for the eigenvalues. Or, in other words, whether there is a common aspect imparted by such a symmetry which may be used to model some particular class of physical systems. The initial approach considered consisted of introducing an pseudo-Hermitian ensemble, isospectral to the -Hermite ensemble, which would present the type of reality-breaking typical of PT-symmetrical systems. In this model, the first approach taken was to introduce perturbation which broke the reality of the spectra. The results obtained allow the conclusion that the transformation into its pseudo-Hermitian similar leads into a system which is asymptotically unstable. An extension of this model was to consider a non-positive pseudo-Hermitian , which lead to similar breaking in the reality of the spectra. This case displays behavior closer to that typical of the PT-symmetric systems present in the literature. A general dense projector model was proposed, and two particular realizations of this model were given more detailed attention. The spectral behavior was also similar to that typical of PT-symmetry for the two realizations considered, and their asymptotic limits were shown to connect to classical ensembles of random matrix theory. Furthermore, the properties of their average characteristic polynomials were obtained and the asymptotic limits of these polynomials were also considered and were related to classical polynomials. The statistical behavior of this ensemble was studied and compared to that of these polynomials. Imposing the pseudo-Hermitian does seem not imply any particular eigenvalue distribution, the common feature being the breaking of the reality of the eigenvalues commonly found in PT-symmetry literature. The most notable result of the studies presented herein is the fact that a pseudo-Hermitian interaction may be constructed such that the average spectral behavior may be controlled by calibrating the mechanism of interaction as well as its intensity.
5

Sobre a termodinâmica dos espectros / On the spectrum thermodynamic

Edelver Carnovali Junior 18 April 2008 (has links)
Três ensembles, respectivamente relacionados com as distribuições Gaussiana, Lognormal e de Levy, são abordados neste trabalho primordialmente do ponto de vista da termodinâmica de seus espectros. Novas expressões para as grandezas termodinâmicas sao encontradas para os ensembles de Stieltjes e de Bertuola-Pato, e a conexão destes com os ensembles Gaussianos e estabelecida. Esta tese também se compromete com a continuação do desenvolvimento e aprimorarão do ensemble generalizado de Bertuola-Pato, estendendo alguns resultados para os ensembles simplifico e unitário generalizados, alem do ortogonal generalizado já introduzido anteriormente por A. C. Bertuola e M. P. Pato. / Three ensembles, related to the Gaussian, the Lognormal and the L´evy distributions respectively, have been studied in this work and were investigated most of all in what concerns their spectral thermodynamics. New expressions for the thermodynamics quantities were found for the Stieltjes and the Bertuola-Pato ensembles, and the connection with the gaussian ensembles is established. This work concerned with the development continuity and with the improvement of Bertuola-Pato generalized ensemble, extending some of the results to the simplectic and unitary generalized ensembles, besides the orthogonal generalized ensemble introduced before by A. C. Bertuola and M. P. Pato.
6

Transporte em nanoestruturas: métodos de movimento Browniano e teoria de circuitos

Fernandes de Macedo Júnior, Ailton January 2006 (has links)
Made available in DSpace on 2014-06-12T18:04:23Z (GMT). No. of bitstreams: 2 arquivo7752_1.pdf: 2968182 bytes, checksum: b99b78d01729ac83718a680337a6d7f1 (MD5) license.txt: 1748 bytes, checksum: 8a4605be74aa9ea9d79846c1fba20a33 (MD5) Previous issue date: 2006 / Faculdade de Amparo à Ciência e Tecnologia do Estado de Pernambuco / Os resultados apresentados nesta tese podem ser divididos em duas partes. Na primeira estudamos uma classe de ensembles de movimento browniano (EMB) da teoria de matrizes aleatórias, gerados a partir da teoria matricial de processos estocásticos markovianos. Os ensembles são caracterizados por uma equação de Fokker-Planck e estão intimamente relacionados a hamiltonianos de sistemas quânticos do tipo Calogero-Sutherland. Esta conexão leva a um esquema geral de classificação baseada numa recente generalização multidimensional dos polinômios ortogonais clássicos. Mostramos que, sob certas condições, os EMB englobam os ensembles de matrizes de transferência. Desta forma, desenvolvemos um tratamento unificado dos ensembles de polinômios e de matrizes de transferência que, além de servir como um esquema de classificação das diversas classes de simetria, fornece técnicas eficientes de cálculo. Desenvolvemos métodos de Fokker-Planck para o cálculo de médias de observáveis representados por estatísticas lineares, assim como para o cálculo de funções de correlação. Neste contexto, desenvolvemos um método de transformada integral e uma generalização do método das funções biortogonais para o cálculo da função de correlação de n-pontos. Os resultados deduzidos neste contexto geral são aplicados a pontos e fios quânticos. Em particular, apresentamos um estudo numérico de propriedades de transporte em pontos quânticos com simetria quiral. Na segunda parte, estudamos uma cavidade caótica balística acoplada, via barreiras de transparência arbitrária, a dois guias semi-infinitos usando as duas abordagens de teoria de circuito disponíveis na literatura: a escalar e a matricial. Mostramos a equivalência destas teorias através do cálculo dos cumulantes da estatística de contagem. Para isso, determinamos as funções geratrizes fornecidas pelas duas teorias e verificamos a concordância dos 18 primeiros cumulantes usando um programa de computação algébrica. Também estudamos distribuições exatas de corrente de alguns sistemas simples de dois terminais, como um ponto quântico com barreiras simétricas. Estes resultados são importantes, pois fornecem uma grandeza diretamente mensurável em experimentos
7

Ensembles de matrizes aleatórias normais: projeção, comportamento assintótico e universalidade dos autovalores / Random normal matrices ensembles: projection, asymptotics behavior and universality of ugenvalues

Veneziani, Alexei Magalhães 12 March 2008 (has links)
Uma matriz `A IND.N´ de ordem N ´e normal se e somente se comuta com sua adjunta. Nesta tese investigamos a estatística dos autovalores (no plano complexo) de ensembles de matrizes aleatórias normais quando a ordem N destas tende a infinito. A função distribuição de probabilidade no espaço das matrizes normais atribui, como na mecânica estatística, um peso de Boltzmann `e POT.-NF(`A IND.N´)´ a cada realização `A IND.N´ destas matrizes, onde F é uma função a valores reais invariante por transformações unitárias. Realizando uma mudança de variáveis (das variáveis de entrada para as variáveis espectrais), escrevemos a distribuição marginal conjunta dos autovalores `{`z IND.i´} POT.N´ `IND.i=1´, bem como a função de n-pontos correspondente a vários ensembles, como o determinante de um núcleo integral associado. A partir deste formalismo bem estabelecido na literatura, apresentaremos nesta tese dois tipos de resultados: Primeiramente, explorando a semelhança da distribuição conjunta dos autovalores a um problema variacional sobre as medidas de equilíbrio eletrostático de cargas sujeitas a um potencial externo V : C ? R (escolhendo F(`A IND.N´) = ```sigma´ POT.N´ IND.i´=1 V (`z IND.i´)), podemos aplicar a teoria de potenciais logarítmicos para obter a única medida de equilíbrio coincidente com a função de 1-ponto destes ensembles. Com base nesta teoria, propomos nesta tese um método de interpolação analítica capaz de projetar a medida de equilíbrio dos ensembles normais em medidas de equilíbrio dos ensembles hermitianos e unitários correspondentes. Ilustramos o procedimento com várias aplicações. O segundo tipo de resultados utiliza o método de ponto de sela ao nícleo integral da família de ensembles de matrizes normais com potenciais `V IND.`alfa´´ (z) = `|z| POT.`alfa´´ , z `PERTENCE A´ C e `alfa´ `PERTENCE A´ ]0,`INFINITO´[. Analogamente ao que foi demonstrado em ensembles hermitianos por Deift, estabelecemos por intermédio desta expansão um conceito similar de universalidade para esta família, fazendo uso de mapas conformes e a teoria de espaços de Segal-Bargmann. Sobre o sentido de universalidade definido por G. Oas, mostramos que a afirmação de universalidade neste sentido por este autor é incorreta quando a cauda desta probabilidade é levada em conta. / A matrix `A IND.N´ of order N is normal if and only if it commutes with its adjoint. In the present thesis we investigate the eigenvalues statistics (in the complex plane) of ensembles of normal random matrices when their order N tends to infinite. The probability distribution function in the space of normal matrices attributes, as in statistical mechanics, a Boltzmann weight `e POT.-NF(`A IND.N´)´ at each matrix realization `A IND.N´, where F is a real-valued function invariant by unitary transformations. By performing a change of variables (from entry variables to spectral variables) we write the marginal joint distribution of eigenvalues {`z IND.i´} POT.N´ `IND.i=1´, as well as the n-points functions corresponding to several ensembles, as the determinant of an associated integral kernel. From this formalism well-established in the literature, we shall present in this thesis two types of results: Firstly, exploiting the similarity of joint distribution of eigenvalues to a variational problem on electrostatic equilibrium measures of charges subjected to an external potential V : C - > R (by choosing F(`A IND.N´) = ```sigma´ POT.N´ IND.i´=1 V (`z IND.i´)), we can apply the theory of logarithmic potentials to obtain the unique equilibrium measure coinciding with the 1-point function of these ensembles. Based on this theory, we propose in this thesis a method of analytical interpolation capable of projecting the equilibrium measure of normal ensembles in equilibrium measures of corresponding Hermitian and unitary ensembles. We give several applications of this procedure. The second type of results utilizes the saddle point method applied to integral kernel of a family of normal matrix ensembles with potentials `V IND.`alfa´´ (z) = `|z| POT.`alfa´´ , z `PERTENCE A´ C e `alfa´ `PERTENCE A´ ]0,`INFINITO´[. Similarly to what has been shown in hermitian ensembles by Deift, we established by mean of this expansion a similar concept of universality for this family, making use of conformal maps and theory of Segal-Bargmann space. Concerning the universality defined by G. Oas, we show that the universality claimed by this author is incorrect when the tail of this probability is taking into account.
8

Ensembles de matrizes aleatórias normais: projeção, comportamento assintótico e universalidade dos autovalores / Random normal matrices ensembles: projection, asymptotics behavior and universality of ugenvalues

Alexei Magalhães Veneziani 12 March 2008 (has links)
Uma matriz `A IND.N´ de ordem N ´e normal se e somente se comuta com sua adjunta. Nesta tese investigamos a estatística dos autovalores (no plano complexo) de ensembles de matrizes aleatórias normais quando a ordem N destas tende a infinito. A função distribuição de probabilidade no espaço das matrizes normais atribui, como na mecânica estatística, um peso de Boltzmann `e POT.-NF(`A IND.N´)´ a cada realização `A IND.N´ destas matrizes, onde F é uma função a valores reais invariante por transformações unitárias. Realizando uma mudança de variáveis (das variáveis de entrada para as variáveis espectrais), escrevemos a distribuição marginal conjunta dos autovalores `{`z IND.i´} POT.N´ `IND.i=1´, bem como a função de n-pontos correspondente a vários ensembles, como o determinante de um núcleo integral associado. A partir deste formalismo bem estabelecido na literatura, apresentaremos nesta tese dois tipos de resultados: Primeiramente, explorando a semelhança da distribuição conjunta dos autovalores a um problema variacional sobre as medidas de equilíbrio eletrostático de cargas sujeitas a um potencial externo V : C ? R (escolhendo F(`A IND.N´) = ```sigma´ POT.N´ IND.i´=1 V (`z IND.i´)), podemos aplicar a teoria de potenciais logarítmicos para obter a única medida de equilíbrio coincidente com a função de 1-ponto destes ensembles. Com base nesta teoria, propomos nesta tese um método de interpolação analítica capaz de projetar a medida de equilíbrio dos ensembles normais em medidas de equilíbrio dos ensembles hermitianos e unitários correspondentes. Ilustramos o procedimento com várias aplicações. O segundo tipo de resultados utiliza o método de ponto de sela ao nícleo integral da família de ensembles de matrizes normais com potenciais `V IND.`alfa´´ (z) = `|z| POT.`alfa´´ , z `PERTENCE A´ C e `alfa´ `PERTENCE A´ ]0,`INFINITO´[. Analogamente ao que foi demonstrado em ensembles hermitianos por Deift, estabelecemos por intermédio desta expansão um conceito similar de universalidade para esta família, fazendo uso de mapas conformes e a teoria de espaços de Segal-Bargmann. Sobre o sentido de universalidade definido por G. Oas, mostramos que a afirmação de universalidade neste sentido por este autor é incorreta quando a cauda desta probabilidade é levada em conta. / A matrix `A IND.N´ of order N is normal if and only if it commutes with its adjoint. In the present thesis we investigate the eigenvalues statistics (in the complex plane) of ensembles of normal random matrices when their order N tends to infinite. The probability distribution function in the space of normal matrices attributes, as in statistical mechanics, a Boltzmann weight `e POT.-NF(`A IND.N´)´ at each matrix realization `A IND.N´, where F is a real-valued function invariant by unitary transformations. By performing a change of variables (from entry variables to spectral variables) we write the marginal joint distribution of eigenvalues {`z IND.i´} POT.N´ `IND.i=1´, as well as the n-points functions corresponding to several ensembles, as the determinant of an associated integral kernel. From this formalism well-established in the literature, we shall present in this thesis two types of results: Firstly, exploiting the similarity of joint distribution of eigenvalues to a variational problem on electrostatic equilibrium measures of charges subjected to an external potential V : C - > R (by choosing F(`A IND.N´) = ```sigma´ POT.N´ IND.i´=1 V (`z IND.i´)), we can apply the theory of logarithmic potentials to obtain the unique equilibrium measure coinciding with the 1-point function of these ensembles. Based on this theory, we propose in this thesis a method of analytical interpolation capable of projecting the equilibrium measure of normal ensembles in equilibrium measures of corresponding Hermitian and unitary ensembles. We give several applications of this procedure. The second type of results utilizes the saddle point method applied to integral kernel of a family of normal matrix ensembles with potentials `V IND.`alfa´´ (z) = `|z| POT.`alfa´´ , z `PERTENCE A´ C e `alfa´ `PERTENCE A´ ]0,`INFINITO´[. Similarly to what has been shown in hermitian ensembles by Deift, we established by mean of this expansion a similar concept of universality for this family, making use of conformal maps and theory of Segal-Bargmann space. Concerning the universality defined by G. Oas, we show that the universality claimed by this author is incorrect when the tail of this probability is taking into account.
9

Métodos de Monte Carlo para amostragem de permutações com restrições e aplicações / Monte Carlo sampling of restricted permutations and aplications

Reale, Fábio Tosetto 06 July 2018 (has links)
Neste trabalho definimos o processo de exclusão simples simétrico em tempo discreto sobre grafos por meio de permutações com restrições sobre os índices dos vértices dos grafos. O processo é uma generalização das permutações dos índices do grafo completo. Apresentamos algoritmos de Monte Carlo e de amostragem sequencial por importância para amostrar permutações com restrições inspirados pelo problema análogo de calcular permanentes. Como aplicação, utilizamos esses algoritmos para estimar os tempos de relaxação do processo de exclusão simples simétrico em tempo discreto sobre grafos aleatórios densos de Erdös-Rényi com laços / In this work we define the symmetric simple exclusion process in discrete time over graphs by means of suitably restricted permutations over the labels of the vertices of the graphs. The process is a generalization of the shuffling of labels on the complete graph. Straightforward Monte Carlo and sequential importance sampling algorithms to sample restricted permutations inspired by the related problem of computing permanents are discussed. We illustrate the formalism by estimating the relaxation times of the symmetric simple exclusion process in discrete time over dense loop-augmented Erdös-Rényi random graphs
10

Matrizes aleatórias no ensemble / Random matrices in the B Ensemble

Santos, Gabriel Marinello de Souza 14 August 2014 (has links)
O estudo de matrizes aleatórias na física tradicionalmente ocorre no contexto dos modelos de Wigner e na estatística por modelos de Wishart, que se conectam através do threefold way de Dyson para matrizes aleatórias reais, complexas e de quaternios indexadas respectivamente pelo índice B = 1; 2; 4 de Dyson. Estudos recentes mostraram o caminho para que estes modelos fossem generalizados para valores reais de B, permitindo o estudo de ensembles com índice arbitrário. Neste trabalho, estudamos as propriedades estatísticas destes sistemas e exploramos a física subjacente nos modelos de Wigner e Wishart e investigamos, através de cálculos numéricos, os efeitos de localização nos modelos de geral. Também introduzimos quebras na simetria desta nova forma e estudamos numericamente os resultados da estatística dos sistemas perturbados. / The study of random matrices in physics has traditionally occurred in the context of Wigner models and in statistics by Wishart models, which are connected through Dyson\'s threefold way for real, complex and quaternion random matrices index by the Dyson _ = 1; 2; 4 index, respectively. Recent studies have shown the way by which these models are generalized for real values of _, allowing for the study the ensembles with arbitrary index. In this work, we study the statistical properties of these systems and explore the underlying physics in Wigner\'s and Wishart\'s models through and investigate through numerical calculations the e_ects of localization in general _ models. We also introduce symmetry breaks in this new form and study numerically the results of the statistics of the disturbed systems.

Page generated in 0.0379 seconds