• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 1
  • 1
  • Tagged with
  • 5
  • 5
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Des structures affines à la géométrie de l'information / From affines structures to the Information Geometry

Byande, Paul Mirabeau 07 December 2010 (has links)
Ce mémoire traite des structures affines et de leur rapport à la géométrie de l'information. Nous y introduisons la notion de T-plongement. Il permet de montrer que l'ensemble des structures affines complètes du tore T^2 est une courbe projective de RP^2. En substituant à la contrainte topologique (compacité) une contrainte dynamique (action canonique de Aff_0(1) dans le démi-plan de Poincaré H^2)on démontre que l'ensemble S des structures Aff_0(1)-invariantes dans H^2 est une surface projective connexe dans RP^5 ne contenant aucun point complet. Un de mes résultats remarquables concerne la classification des éléments de S pour la relation d'isomorphisme.Nous exploitons un outil récent: la KV-cohomologie. Outre le rôle fondamental joué par la KV-cohomologie dans l'étude des points rigides dans certains modules des structures affines, elle nous a permis d'aborder avec succès une problématique qui est au centre de la géométrie de l'information. Cette problématique concerne la détermination des structures affines invariantes dans les variétés modèles statistiques qui sont invariantes par toute transformation non singulière de l'espace des paramètres. Celles-ci ont une signification pertinente en statistique. / This dissertation deals with modules of affinely flat structure and with their relationships between these structures and the information geometry. The so-called T-embedding is used to prove that the set of complete locally flat structures is an irreducible projective curve in RP^2. In the same way we prove that the set S of Aff_0(1)-invariant locally flat structure in H^2 is a connected projective surface in RP^5, which does not contain any complete point. We also give the classification up to isomorphism of S. We use the KV-cohomology to study the rigidity problem for locally flat structures. The main concern of information geometry is the study of geometrical invariants in statistical models. We perform the KV-cohomology to bring in control this problem.
2

Étude explicite de quelques n-champs géométriques

Benzeghli, Brahim 03 June 2013 (has links) (PDF)
Dans [PRID], Pridham a montré que tout n-champs d'Artin M admet une présentation en tant que schéma simplicial X. → M, telle que le schéma simplicial X satisfait à certaines propriétés notées par G.Pn,k de [GROTH]. Dans la présentation (...→ X2 → X1 → X0 → M), le schéma X1 représente une carte pour X0 x MX0. Donc, la lissité de X0 → M est équivalente à la lissité des deux projections ә0,ә1 : X1 → X0. Ce sont les deux premières parties de la condition de Grothendieck-Pridham, notées G.P1,0 et G.P1,1. Dans [BENZ12] nous avons introduit un n-champ d'Artin M des éléments de Maurer-Cartan d'une dg-catégorie. On a construit une carte, et on a déjà fait la preuve des premières conditions de lissité explicitement. Pour tout n et tout 0 ≤ k ≤ n Pridham considère un schéma noté MatchΛkn(X) avec un morphisme Xn → MatchΛkn(X). On construira explicitement le schéma simplicial de Grothendieck-Pridham X, on montrera la lissité formelle de cette carte précédente, ainsi que M est un n-champ géométrique.
3

Étude explicite de quelques n-champs géométriques / Non disponible

Benzeghli, Brahim 03 June 2013 (has links)
Dans [PRID], Pridham a montré que tout n-champs d'Artin M admet une présentation en tant que schéma simplicial X. → M, telle que le schéma simplicial X satisfait à certaines propriétés notées par G.Pn,k de [GROTH]. Dans la présentation (…→ X2 → X1 → X0 → M), le schéma X1 représente une carte pour X0 x MX0. Donc, la lissité de X0 → M est équivalente à la lissité des deux projections ә0,ә1 : X1 → X0. Ce sont les deux premières parties de la condition de Grothendieck-Pridham, notées G.P1,0 et G.P1,1. Dans [BENZ12] nous avons introduit un n-champ d'Artin M des éléments de Maurer-Cartan d'une dg-catégorie. On a construit une carte, et on a déjà fait la preuve des premières conditions de lissité explicitement. Pour tout n et tout 0 ≤ k ≤ n Pridham considère un schéma noté MatchΛkn(X) avec un morphisme Xn → MatchΛkn(X). On construira explicitement le schéma simplicial de Grothendieck-Pridham X, on montrera la lissité formelle de cette carte précédente, ainsi que M est un n-champ géométrique. / In [PRID], Pridham has shown that any Artin n-stack M has a presentation as a simplicial scheme X. → M such that the simplicial scheme X satisfies certain properties denoted G.Pn,k of [GROTH]. In the presentation (…→ X2 → X1 → X0 → M), the scheme X1 represents a chart for X0 x MX0. Thus, the smoothness of X0 → M is equivalent to the smoothness of the two projections ә0,ә1 : X1 → X0. These are the first two parts of the Grothendieck-Pridham condition, denoted G.P1,0 and G.P1,1. In [BENZ12] we introduced an Artin n-stack M of Maurer-Cartan elements of a dg-category. We constructed a chart, and have already proven the first smoothness conditions explicitly. For any n and any 0 ≤ k ≤ n Pridham considers a scheme denoted MatchΛkn(X) with a morphism Xn → MatchΛkn(X). We will construct explicitly the Grothendieck-Pridham simplicial scheme and show the smoothness of the preceding map, therefore M is a geometric n-stack.
4

Simetrinės trečiosios eilės liestinės sluoksniuotės / Symmetric tangent bundle of order three

Pavolaitė, Miglė 09 July 2010 (has links)
Darbe nagrinėjamos simetrinės trečiosios eilės liestinės sluoksniuotės, kurios apibrėžiamos kaip 3 - džetų aibės. Surasta simetrinės erdvės izotropijų grupė, o taip pat jos izomorfijų grupė. Gautos izomorfijų grupės struktūrinės lygtys, surasti erdvės Maurerio – Kartano lygčių analogai, įrodytos formulės, išreiškiančios indukuotosios afiniosios sieties kreivumo tenzorių komponentes izomorfijų grupės struktūrinėmis konstantomis. Taip pat gauta visa eilė tapatybių, siejančių kreivumo objektus ir izomorfijų grupės struktūrines konstantas (apibendrintos Ričio ir Bianchi tapatybės). / The paper examined the symmetric third order tangent bundle, defined as 3- jet space. Found symmetric space isotropy group, as well as its isomorphy group. The resulting structural equation of isomorphy group, find this area Maurer - Cartan analogues of equations, an established formula, expressing inducted affines connection component of curvature tensors of the isomorphy group structural constants. Also received identities connecting the curvature objects structural constants of isomorphy group (generalized in Riči and Bianchi identity).
5

Equations fonctionnelles et algèbres de Lie

Petracci, Emanuela 14 January 2003 (has links) (PDF)
Dans cette thèse on a étudié plusieurs problèmes<br />algébriques relatifs à une superalgèbre de Lie qui peuvent être<br />réduits à la résolution d'une équation fonctionnelle. Cette<br />technique a permis d'obtenir des résultats qui sont nouveaux<br />aussi pour une algèbre de Lie ordinaire et qui sont indépendants<br />de la classification des algèbres de Lie.

Page generated in 0.0266 seconds