• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 59
  • 18
  • 7
  • 6
  • 5
  • 4
  • 4
  • 3
  • 2
  • 1
  • Tagged with
  • 111
  • 111
  • 63
  • 43
  • 38
  • 27
  • 19
  • 19
  • 18
  • 16
  • 16
  • 14
  • 14
  • 14
  • 14
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
81

Essays in mathematical finance

Murgoci, Agatha January 2009 (has links)
Diss. Stockholm : Handelshögskolan, 2009
82

A Switching Black-Scholes Model and Option Pricing

Webb, Melanie Ann January 2003 (has links)
Derivative pricing, and in particular the pricing of options, is an important area of current research in financial mathematics. Experts debate on the best method of pricing and the most appropriate model of a price process to use. In this thesis, a ``Switching Black-Scholes'' model of a price process is proposed. This model is based on the standard geometric Brownian motion (or Black-Scholes) model of a price process. However, the drift and volatility parameters are permitted to vary between a finite number of possible values at known times, according to the state of a hidden Markov chain. This type of model has been found to replicate the Black-Scholes implied volatility smiles observed in the market, and produce option prices which are closer to market values than those obtained from the traditional Black-Scholes formula. As the Markov chain incorporates a second source of uncertainty into the Black-Scholes model, the Switching Black-Scholes market is incomplete, and no unique option pricing methodology exists. In this thesis, we apply the methods of mean-variance hedging, Esscher transforms and minimum entropy in order to price options on assets which evolve according to the Switching Black-Scholes model. C programs to compute these prices are given, and some particular numerical examples are examined. Finally, filtering techniques and reference probability methods are applied to find estimates of the model parameters and state of the hidden Markov chain. / Thesis (Ph.D.)--Applied Mathematics, 2003.
83

Uma meta-heurística para uma classe de problemas de otimização de carteiras de investimentos

Silva, Yuri Laio Teixeira Veras 16 February 2017 (has links)
Submitted by Leonardo Cavalcante (leo.ocavalcante@gmail.com) on 2018-06-11T11:34:10Z No. of bitstreams: 1 Arquivototal.pdf: 1995596 bytes, checksum: bfcc1e1f3a77514dcbf7a8e4f5e4701b (MD5) / Made available in DSpace on 2018-06-11T11:34:10Z (GMT). No. of bitstreams: 1 Arquivototal.pdf: 1995596 bytes, checksum: bfcc1e1f3a77514dcbf7a8e4f5e4701b (MD5) Previous issue date: 2017-02-16 / Conselho Nacional de Pesquisa e Desenvolvimento Científico e Tecnológico - CNPq / The problem in investment portfolio selection consists in the allocation of resources to a finite number of assets, aiming, in its classic approach, to overcome a trade-off between the risk and expected return of the portfolio. This problem is one of the most important topics targeted at today’s financial and economic issues. Since the pioneering works of Markowitz, the issue is treated as an optimisation problem with the two aforementioned objectives. However, in recent years, various restrictions and additional risk measurements were identified in the literature, such as, for example, cardinality restrictions, minimum transaction lot and asset pre-selection. This practice aims to bring the issue closer to the reality encountered in financial markets. In that regard, this paper proposes a metaheuristic called Particle Swarm for the optimisation of several PSPs, in such a way that allows the resolution of the problem considering a set of restrictions chosen by the investor. / O problema de seleção de carteiras de investimentos (PSP) consiste na alocação de recursos a um número finito de ativos, objetivando, em sua abordagem clássica, superar um trade-off entre o retorno esperado e o risco da carteira. Tal problema ´e uma das temáticas mais importantes voltadas a questões financeiras e econômicas da atualidade. Desde os pioneiros trabalhos de Markowitz, o assunto é tratado como um problema de otimização com esses dois objetivos citados. Entretanto, nos últimos anos, diversas restrições e mensurações de riscos adicionais foram consideradas na literatura, como, por exemplo, restrições de cardinalidade, de lote mínimo de transação e de pré-seleção de ativos. Tal prática visa aproximar o problema da realidade encontrada nos mercados financeiros. Neste contexto, o presente trabalho propõe uma meta-heurística denominada Adaptive Non-dominated Sorting Multiobjective Particle Swarm Optimization para a otimização de vários problemas envolvendo PSP, de modo que permita a resolução do problema considerando um conjunto de restri¸c˜oes escolhidas pelo investidor.
84

Hedging no modelo com processo de Poisson composto / Hedging in compound Poisson process model

Sae Hon Sung, Victor 07 December 2015 (has links)
Submitted by Caroline Periotto (carol@ufscar.br) on 2016-09-09T19:56:20Z No. of bitstreams: 1 DissVSHS.pdf: 882234 bytes, checksum: f08aea79440ba666e616318257bbdec9 (MD5) / Approved for entry into archive by Marina Freitas (marinapf@ufscar.br) on 2016-09-13T14:05:42Z (GMT) No. of bitstreams: 1 DissVSHS.pdf: 882234 bytes, checksum: f08aea79440ba666e616318257bbdec9 (MD5) / Approved for entry into archive by Marina Freitas (marinapf@ufscar.br) on 2016-09-13T14:05:49Z (GMT) No. of bitstreams: 1 DissVSHS.pdf: 882234 bytes, checksum: f08aea79440ba666e616318257bbdec9 (MD5) / Made available in DSpace on 2016-09-13T14:05:56Z (GMT). No. of bitstreams: 1 DissVSHS.pdf: 882234 bytes, checksum: f08aea79440ba666e616318257bbdec9 (MD5) Previous issue date: 2015-12-07 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) / The investor, that negotiate assets, is subject to economic risks of any negotiation because there is no certainty regarding the appreciation or depreciation of an asset. Here comes the futures market, where contracts can be negotiated in order to protect (hedge) the risk of excessive losses or gains, making the purchase or sale assets, fair for both sides. The goal of this work consist in study Lévy pure-jump process with finite activity, also known as compound Poisson process, and its applications. Discovered by the French mathematician Paul Pierre Lévy, the Lévy processes admits jumps in paths, which is often observed in financial markets. We will define a hedging strategy for a market model with compound Poisson process using mean-variance hedging and dynamic programming. / Interessado em fazer com que o seu capital gere lucros, o investidor ao optar por negociar ativos, fica sujeito aos riscos econômicos de qualquer negociação, pois não existe uma certeza quanto a valorização ou desvalorização de um ativo. Eis que surge o mercado futuro, em que é possível negociar contratos a fim de se proteger (hedge) dos riscos de perdas ou ganhos excessivos, fazendo com que a compra ou venda de ativos, seja justa para ambas as partes. O objetivo deste trabalho consiste em estudar os processos de Lévy de puro salto de atividade finita, também conhecido como modelo de Poisson composto, e suas aplicações. Proposto pelo matemático francês Paul Pierre Lévy, os processos de Lévy tem como principal característica admitir saltos em sua trajetória, o que é frequentemente observado no mercado financeiro. Determinaremos uma estratégia de hedging no modelo de mercado com o processo de Poisson composto via o conceito de mean-variance hedging e princípio da programação dinâmica.
85

Controle ótimo de sistemas lineares com saltos Markovianos e ruídos multiplicativos sob o critério de média variância ao longo do tempo. / Optimal control of linear systems with Markov jumps and multiplicative noises under a multiperiod mean-variance criterion.

Alexandre de Oliveira 16 November 2011 (has links)
Este estudo considera o modelo de controle ótimo estocástico sob um critério de média-variância para sistemas lineares a tempo discreto sujeitos a saltos Markovianos e ruídos multiplicativos sob dois critérios. Inicialmente, consideramos como critério de desempenho a minimização multiperíodo de uma combinação entre a média e a variância da saída do sistema sem restrições. Em seguida, consideramos o critério de minimização multiperíodo da variância da saída do sistema ao longo do tempo com restrições sobre o valor esperado mínimo. Condições necessárias e suficientes explícitas para a existência de um controle ótimo são determinadas generalizando resultados anteriores existentes na literatura. O controle ótimo é escrito como uma realimentação de estado adicionado de um termo constante. Esta solução é obtida através de um conjunto de equações generalizadas a diferenças de Riccati interconectadas com um conjunto de equações lineares recursivas. Como aplicação, apresentamos alguns exemplos numéricos práticos para um problema de seleção de portfólio multiperíodo com mudança de regime, incluindo uma estratégia de ALM (Asset and Liability Management). Neste problema, deseja-se obter a melhor alocação de portfólio de forma a otimizar seu desempenho entre risco e retorno em cada passo de tempo até o nal do horizonte de investimento e sob um dos dois critérios citados acima. / In this work we consider the stochastic optimal control problem of discrete-time linear systems subject to Markov jumps and multiplicative noise under two criterions. First, we consider an unconstrained multiperiod mean-variance trade-off performance criterion. In the sequence, we consider a multiperiod minimum variance criterion subject to constraints on the minimum expected output along the time. We present explicit necessary and sufficient conditions for the existence of an optimal control strategy for the problems, generalizing previous results in the literature. The optimal control law is written as a state feedback added with a deterministic sequence. This solution is derived from a set of coupled generalized Riccati difference equations interconnected with a set of coupled linear recursive equations. As an application, we present some practical numerical examples on a multiperiod portfolio selection problem with regime switching, including an Asset and Liability Management strategy. In this problem it is desired to nd the best portfolio allocation in order to optimize its risk-return performance in every time step along the investment horizon, under one of the two criterions stated above.In this work we consider the stochastic optimal control problem of discrete-time linear systems subject to Markov jumps and multiplicative noise under two criterions. First, we consider an unconstrained multiperiod mean-variance trade-off performance criterion. In the sequence, we consider a multiperiod minimum variance criterion subject to constraints on the minimum expected output along the time. We present explicit necessary and sufficient conditions for the existence of an optimal control strategy for the problems, generalizing previous results in the literature. The optimal control law is written as a state feedback added with a deterministic sequence. This solution is derived from a set of coupled generalized Riccati difference equations interconnected with a set of coupled linear recursive equations. As an application, we present some practical numerical examples on a multiperiod portfolio selection problem with regime switching, including an Asset and Liability Management strategy. In this problem it is desired to nd the best portfolio allocation in order to optimize its risk-return performance in every time step along the investment horizon, under one of the two criterions stated above.
86

Methods of optimizing investment portfolios

Seepi, Thoriso P.J. January 2013 (has links)
>Magister Scientiae - MSc / In this thesis, we discuss methods for optimising the expected rate of return of a portfolio with minimal risk. As part of the work we look at the Modern Portfolio Theory which tries to maximise the portfolio's expected rate of return for a cer- tain amount of risk. We also use Quadratic Programming to optimise portfolios. Generally it is recognised that portfolios with a high expected return, carry higher risk. The Modern Portfolio Theory assists when choosing portfolios with the lowest possible risk. There is a nite number of assets in a portfolio and we therefore want to allocate them in such a way that we're able to optimise the expected rate of return with minimal risk. We also use the Markowian approach to allocate these assets. The Capital Asset Pricing Model is also used, which will help us to reduce our e cient portfolio to a single portfolio. Furthermore we use the Black-Litterman model to try and optimise our portfolio with a view to understanding the current market conditions, as well as considering how the market will perform in the future. An additional tool we'll use is Value at Risk. This enables us to manage the market risk. To this end, we follow the three basic approaches from Jorion [Value at Risk. USA: McGraw-Hills, 2001]. The Value at Risk tool has become essential in calcu- lating a portfolio's risk over the last decade. It works by monitoring algorithms in order to nd the worst possible scenarios within the portfolio. We perform several numerical experiments in MATLAB and Microsoft Excel and these are presented in the thesis with the relevant descriptions.
87

Trois essais sur la généralisation des préférences moyenne-variance à l'ambiguïté / Three essays on the generalisation of mean-variance preferences to ambiguity

Andre, Eric 08 December 2014 (has links)
Cette thèse propose une généralisation des préférences moyenne-variance à l'ambiguïté, c'est-à-dire aux contextes dans lesquels l'investisseur ne peut pas, ou ne souhaite pas, décrire le comportement des actifs risqués par un modèle probabilisé unique. Elle se rattache donc au champ de recherche qui vise à appliquer les modèles de décision dans l'ambiguïté à la théorie mathématique de la finance, et dont le but est d'améliorer les capacités descriptives de cette théorie financière par la généralisation d'une de ses hypothèses centrales : l'utilité espérée.Les modèles étudiés ici sont ceux qui représentent les croyances du décideur par un ensemble de probabilités, ou priors : on cherche à montrer, d'une part, sous quelles conditions ces modèles peuvent être appliqués à la théorie financière et, d'autre part, ce qu'ils lui apportent. Ainsi, après une introduction générale qui propose une synthèse des avancées de ce champ de recherche, un premier essai étudie les conditions de compatibilité entre ces modèles à ensemble de priors et les préférences moyenne-variance, un deuxième essai analyse les possibilités offertes par le modèle Vector Expected Utility pour généraliser ces préférences à l'ambiguïté et, finalement, un troisième essai développe l'une de ces pistes pour construire un critère moyenne-variance généralisé et étudier les effets de l'aversion à l'ambiguïté sur la composition optimale d'un portefeuille d'actifs risqués. Les résultats obtenus permettent notamment de conclure que l'aversion à l'ambiguïté est bien une explication possible du puzzle de la préférence pour le pays d'origine. / This dissertation proposes a generalisation of the mean-variance preferences to ambiguity, that is contexts in which the investor can not, or does not wish to, describe the behaviour of the risky assets with a single probabilistic model. Hence it belongs to the field of research that seeks to apply models of decision under ambiguity to the mathematical theory of finance, and whose aim is to improve the descriptive capacities of this theory of finance through the generalisation of one of its central hypothesis: expected utility.The models that are studied here are those which represent the decision maker's beliefs by a set of priors: we aim to show, on the one hand, under which conditions these models can be applied to the financial theory, and, on the other hand, what they bring to it. Therefore, following a general introduction which proposes a survey of the advances of this field of research, a first essay studies the conditions of compatibility between these models with a set of priors and the mean-variance preferences, a second essay analyses the possibilities given by the Vector Expected Utility model to generalise these preferences to ambiguity and, finally, a third essay develops one of these threads to construct a generalised mean-variance criterion and to study the effects of ambiguity aversion on the optimal composition of a portfolio of risky assets. The results that are obtained allow notably to conclude that aversion to ambiguity is indeed a possible explanation of the home-bias puzzle.
88

Mean-Variance Portfolio Optimization : Challenging the role of traditional covariance estimation / Effektiv portföljförvaltning : en utvärdering av metoder for kovariansskattning

MARAKBI, ZAKARIA January 2016 (has links)
Ever since its introduction in 1952, the Mean-Variance (MV) portfolio selection theory has remained a centerpiece within the realm of e_cient asset allocation. However, in scienti_c circles, the theory has stirred controversy. A strand of criticism has emerged that points to the phenomenon that Mean-Variance Optimization su_ers from the severe drawback of estimation errors contained in the expected return vector and the covariance matrix, resulting in portfolios that may signi_cantly deviate from the true optimal portfolio. While a substantial amount of e_ort has been devoted to estimating the expected return vector in this context, much less is written about the covariance matrix input. In recent times, however, research that points to the importance of the covariance matrix in MV optimization has emerged. As a result, there has been a growing interest whether MV optimization can be enhanced by improving the estimate of the covariance matrix. Hence, this thesis was set forth by the purpose to investigate whether nancial practitioners and institutions can allocate portfolios consisting of assets in a more e_cient manner by changing the covariance matrix input in mean-variance optimization. In the quest of chieving this purpose, an out-of-sample analysis of MV optimized portfolios was performed, where the performance of ve prominent covariance matrix estimators were compared, holding all other things equal in the MV optimization. The optimization was performed under realistic investment constraints, taking incurred transaction costs into account, and for an investment asset universe ranging from equity to bonds. The empirical _ndings in this study suggest one dominant estimator: the covariance matrix estimator implied by the Gerber Statistic (GS). Speci_cally, by using this covariance matrix estimator in lieu of the traditional sample covariance matrix, the MV optimization rendered more e_cient portfolios in terms of higher Sharpe ratios, higher risk-adjusted returns and lower maximum drawdowns. The outperformance was protruding during recessionary times. This suggests that an investor that employs traditional MVO in quantitative asset allocation can improve their asset picking abilities by changing to the, in theory, more robust GS  ovariance matrix estimator in times of volatile nancial markets.
89

Multi-period portfolio optimization given a priori information on signal dynamics and transactions costs

Yassir, Jedra January 2018 (has links)
Multi-period portfolio optimization (MPO) has gained a lot of interest in modern portfolio theory due to its consideration for inter-temporal trading e effects, especially market impacts and transactions costs, and for its subtle reliability on return predictability. However, because of the heavy computational demand, portfolio policies based on this approach have been sparsely explored. In that regard, a tractable MPO framework proposed by N. Gârleanu & L. H. Pedersen has been investigated. Using the stochastic control framework, the authors provided a closed form expression of the optimal policy. Moreover, they used a specific, yet flexible return predictability model. Excess returns were expressed using a linear factor model, and the predicting factors were modeled as mean reverting processes. Finally, transactions costs and market impacts were incorporated in the problem formulation as a quadratic function. The elaborated methodology considered that the market returns dynamics are governed by fast and slow mean reverting factors, and that the market transactions costs are not necessarily quadratic. By controlling the exposure to the market returns predicting factors, the aim was to uncover the importance of the mean reversion speeds in the performance of the constructed trading strategies, under realistic market costs. Additionally, for the sake of comparison, trading strategies based on a single-period mean variance optimization were considered. The findings suggest an overall superiority in performance for the studied MPO approach even when the market costs are not quadratic. This was accompanied with evidence of better usability of the factors' mean reversion speed, especially fast reverting factors, and robustness in adapting to transactions costs. / Portföljoptimering över era perioder (MPO) har fått stort intresse inom modern portföljteori. Skälet till detta är att MPO tar hänsyn till inter-temporala handelseffekter, särskilt marknadseffekter och transaktionskostnader, plus dess tillförlitlighet på avkastningsförutsägbarhet. På grund av det stora beräkningsbehovet har dock portföljpolitiken baserad på denna metod inte undersökts mycket. I det avseendet, har en underskriven MPO ramverk som föreslagits av N.Gârleanu L. H. Pedersen undersökts. Med hjälp av stokastiska kontrollramen tillhandahöll författarna formuläret för sluten form av den optimala politiken. Dessutom använde de en specifik, men ändå flexibel returförutsägbarhetsmodell. Överskjutande avkastning uttrycktes med hjälp av en linjärfaktormodell och de förutsägande faktorerna modellerades som genomsnittligaåterföringsprocesser. Slutligen inkorporerades transaktionskostnader och marknadseffekter i problemformuleringen som en kvadratisk funktion. Den utarbetade metodiken ansåg att marknadens avkastningsdynamik styrs av snabba och långsammaåterhämtningsfaktorer, och att kostnaderna för marknadstransaktioner inte nödvändigtvis är kvadratiska. Genom att reglera exponeringen mot marknaden återspeglar förutsägande faktorer, var målet att avslöja vikten av de genomsnittliga omkastningshastigheterna i utförandet av de konstruerade handelsstrategierna, under realistiska marknadskostnader. Dessutom, för jämförelses skull, övervägdes handelsstrategier baserade på en enstaka genomsnittlig variansoptimering. Resultaten tyder på en överlägsen överlägsenhet i prestanda för det studerade MPO-tillvägagångssättet, även när marknadsutgifterna inte är kvadratiska. Detta åtföljdes av bevis för bättre användbarhet av faktorernas genomsnittliga återgångshastighet, särskilt snabba återställningsfaktorer och robusthet vid anpassning till transaktionskostnader
90

Portfolio Optimization: An Evaluation of the Downside Risk Framework on the Nordic Equity Markets / Portföljoptimering: En Utvärdering av Riskmåttet Downside Risk på de Nordiska Aktiemarknaderna

Pettersson, Fabian, Ringström, Oskar January 2020 (has links)
Risk management in portfolio construction is a widely discussed topic and the tradeoff between risk and return is always considered before an investment is made. Modern portfolio theory is a mathematical framework which describes how a rational investor can use diversification to optimize a portfolio, which suggests using variance to measure financial risk. However, since variance is a symmetrical metric, the framework fails to correctly account for the loss aversion preferences most investors exhibit. Therefore, the use of downside risk measures were proposed, which only measures the variance of the portfolio below a certain threshold, usually set to zero or the risk-free rate. This thesis empirically investigates the differences in performance between the two risk measures when used to solve a real world portfolio optimization problem. Backtests using the different measures on all major Nordic equity markets are performed to highlight the dynamics between the frameworks, and when one should be preferred over the other. It is concluded that the optimization frameworks indeed provides a useful tool for investors to construct great performing portfolios. However, even though the downside risk framework is more mathematically rigorous, implementing this risk measure instead of variance seems to be of less importance for the actual results. / Riskhantering för aktieportföljer är mycket centralt och en avvägning mellan risk och avkastning görs alltid innan en investering. Modern Portföljteori är ett matematiskt ramverk som beskriver hur en rationell investerare kan använda diversifiering för att optimera en portfölj. Centralt för detta är att använda portföljens varians för att mäta risk. Dock, eftersom varians är ett symmetriskt mått lyckas inte detta ramverk korrekt ta hänsyn till den förlustaversion som de flesta investerare upplever. Därför har det föreslagits att istället använda olika mått på nedsiderisk (downside risk), som endast tar hänsyn till portföljens varians under en viss avkastningsgräns, oftast satt till noll eller den riskfria räntan. Denna studie undersöker skillnaderna i prestation mellan dessa två riskmått när de används för att lösa ett verkligt portföljoptimeringsproblem. Backtests med riskmåtten har genomförts på de olika nordiska aktiemarknaderna för att visa på likheter och skillnader mellan de olika riskmåtten, samt när det enda är att föredra framför det andra. Slutsatsen är att ramverken ger investerare ett användbart verktyg för att smidigt optimera portföljer. Däremot verkar den faktiska skillnaden mellan de två riskmåtten vara av mindre betydelse för portföljernas prestation. Detta trots att downside risk är mer matematiskt rigoröst.

Page generated in 0.0504 seconds