Spelling suggestions: "subject:"mean field"" "subject:"jean field""
91 |
Finite-State Mean-Field Games, Crowd Motion Problems, and its Numerical MethodsMachado Velho, Roberto 10 September 2017 (has links)
In this dissertation, we present two research projects, namely finite-state mean-field games and the Hughes model for the motion of crowds.
In the first part, we describe finite-state mean-field games and some applications to socio-economic sciences. Examples include paradigm shifts in the scientific community and the consumer choice behavior in a free market. The corresponding finite-state mean-field game models are hyperbolic systems of partial differential equations, for which we propose and validate a new numerical method. Next, we consider the dual formulation to two-state mean-field games, and we discuss numerical methods for these problems. We then depict different computational experiments, exhibiting a variety of behaviors, including shock formation, lack of invertibility, and monotonicity loss. We conclude the first part of this dissertation with an investigation of the shock structure for two-state problems.
In the second part, we consider a model for the movement of crowds proposed by R. Hughes in [56] and describe a numerical approach to solve it. This model comprises a Fokker-Planck equation coupled with an Eikonal equation with Dirichlet or Neumann data. We first establish a priori estimates for the solutions. Next, we consider radial solutions, and we identify a shock formation mechanism. Subsequently, we illustrate the existence of congestion, the breakdown of the model, and the trend to the equilibrium. We also propose a new numerical method for the solution of Fokker-Planck equations and then to systems of PDEs composed by a Fokker-Planck equation and a potential type equation. Finally, we illustrate the use of the numerical method both to the Hughes model and mean-field games. We also depict cases such as the evacuation of a room and the movement of persons around Kaaba (Saudi Arabia).
|
92 |
Inclusion of dissipative effects in quantum time-dependent mean-field theories / Inclusion des effets dissipatifs dans les théories de champ moyen quantique dépendantes du tempsSlama, Nader 21 May 2015 (has links)
Les théories de champ moyen quantique représentent une base robuste pour la description de la dynamique de nombreux systèmes physiques, des noyaux aux systèmes moléculaires et aux agrégats. Cependant, le traitement incomplet des corrélations électroniques au niveau du champ moyen empêche de donner une description propre de la dynamique, en particulier la dynamique dans les régimes dissipatifs. La dissipation est intrinsèquement liée à la thermalisation qui représente le phénomène cible à d'écrire dans ce travail. Nous avons exploré un schéma purement quantique en terme des matrices densités et qui consiste en l'inclusion des corrélations de type collisions, responsables de la thermalisation dans les systèmes quantiques finis. Ceci est fait en traitant les corrélations entre deux particules avec la théorie des perturbations dépendantes du temps tout au long d'un intervalle de temps. Ceci permet de créer un ensemble d'états de type champ moyen pur pour les différentes configurations. Ces états sont traités stochastiquement dans la dynamique et fournissent en moyenne un état corrélé. Nous proposons dans ce travail une reformulation de cette théorie en terme des fonctions d'ondes où les corrélations sont traitées comme des transitions multiples de type particule-trou, limitées aux transitions deux-particules-deux-trous dans notre cas. On applique le schéma obtenu à un modèle unidimensionnel simulant de petites molécules. La capacité de cette théorie à introduire les effets dissipatifs dans le cadre du champ moyen est illustrée à travers plusieurs observables tels que les matrices à un et deux corps, les nombres d'occupation et l'entropie à un corps / Quantum mean field theories represent a robust basis for the description of many dynamical situations from nuclei to molecular systems and clusters. However, the missing of electronic correlations on top of mean field prevents them to give a proper description of the dynamics, in particular dissipative dynamics. Dissipation is intrinsically linked to thermalization which represents the target phenomenon to be described in this thesis. We thus explore a fully quantum mechanical strategy proposed in terms of density matrices in the case of nuclear collisions and which consists in the inclusion of collisional correlations responsible of thermalization in quantum finite systems. This is done by treating two body correlations in time dependent perturbation theory along a certain time span that allows to create an ensemble of pure mean field states for different configurations. These states are used into the dynamics, stochastically, providing in the average one correlated state. We propose in this work a reformulation of this theory in term of wave functions where correlations are translated into multiple particle-hole transitions, restricted to two-particles-two-holes transitions in our case. We apply the obtained scheme to a one dimensional model simulating small molecules. The ability of this theory to include dissipative effects on top of mean field is illustrated through several observables such as the one and two body density matrices, the occupation numbers and the one body entropy.
|
93 |
Contributions in fractional diffusive limit and wave turbulence in kinetic theoryMerino Aceituno, Sara January 2015 (has links)
This thesis is split in two different topics. Firstly, we study anomalous transport from kinetic models. Secondly, we consider the equations coming from weak wave turbulence theory and we study them via mean-field limits of finite stochastic particle systems. $\textbf{Anomalous transport from kinetic models.}$ The goal is to understand how fractional diffusion arises from kinetic equations. We explain how fractional diffusion corresponds to anomalous transport and its relation to the classical diffusion equation. In previous works it has been seen that particles systems undergoing free transport and scattering with the media can give rise to fractional phenomena in two cases: firstly, if in the dynamics of the particles there is a heavy-tail equilibrium distribution; and secondly, if the scattering rate is degenerate for small velocities. We use these known results in the literature to study the emergence of fractional phenomena for some particular kinetic equations. Firstly, we study BGK-type equations conserving not only mass (as in previous results), but also momentum and energy. In the hydrodynamic limit we obtain a fractional diffusion equation for the temperature and density making use of the Boussinesq relation and we also demonstrate that with the same rescaling fractional diffusion cannot be derived additionally for the momentum. But considering the case of conservation of mass and momentum only, we do obtain the incompressible Stokes equation with fractional diffusion in the hydrodynamic limit for heavy-tailed equilibria. Secondly, we will study diffusion phenomena arising from transport of energy in an anharmonic chain. More precisely, we will consider the so-called FPU-$\beta$ chain, which is a very simple model for a one-dimensional crystal in which atoms are coupled to their nearest neighbours by a harmonic potential, weakly perturbed by a nonlinear quartic potential. The starting point of our mathematical analysis is a kinetic equation; lattice vibrations, responsible for heat transport, are modelled by an interacting gas of phonons whose evolution is described by the Boltzmann Phonon Equation. Our main result is the derivation of an anomalous diffusion equation for the temperature. $\textbf{Weak wave turbulence theory and mean-field limits for stochastic particle systems.}$ The isotropic 4-wave kinetic equation is considered in its weak formulation using model homogeneous kernels. Existence and uniqueness of solutions is proven in a particular setting. We also consider finite stochastic particle systems undergoing instantaneous coagulation-fragmentation phenomena and give conditions in which this system approximates the solution of the equation (mean-field limit).
|
94 |
Performances réseaux et système pour le cloud computing / Joint network and system performance for cloud computingBelhareth, Sonia 18 December 2014 (has links)
Le cloud computing permet d'offrir un accès à la demande à des ressources de calcul et de stockage. Le succès du cloud computing nécessite la maîtrise d'aspects système et réseau. Dans cette thèse, nous nous sommes intéressés aux performances du protocole TCP Cubic, qui est la version par défaut de TCP sous Linux et donc présent dans de nombreux serveurs opérationnels dans les data centers actuels. Afin de comprendre les performances d'un environnement cloud, qui offre un faible produit bande passante-délai pour le cas intra-data center, et un fort produit dans le cas inter-data center, nous avons développé des modèles analytiques pour les cas d'une ou plusieurs connexions TCP Cubic. Nos modèles se sont révélés précis dans le cas intra-datacenter, mais ne capturaient pas la synchronisation des pertes indiquée par les simulations ns-2 dans le cas inter-datacenter. Nous avons complété les simulations par des tests en environnements réels avec (i) un réseau expérimental à l'I3S ; et (ii) une solution cloud interne à Orange : Cube. Les études dans Cube nous ont démontré la forte corrélation qui pouvait exister entre performances réseau et système, et la complexité d'analyser les performances des applications dans des contextes cloud. Les études dans l'environnement I3S ont confirmé la forte synchronisation qui peut exister entre connexions TCP Cubic et nous ont permis de définir les conditions d'apparition de cette synchronisation. Nous avons étudié deux types de solution pour lutter contre la synchronisation: des solutions niveau client, avec des modifications de TCP Cubic, et des solutions réseau avec l'utilisation de politiques de gestion de tampon, notamment PIE et Codel. / Cloud computing enables a flexible access to computation and storage services. This requires, for the cloud service provider, mastering network and system issues. During this PhD thesis, we focused on the performance of TCP Cubic, which is the default version of TCP in Linux and thus widely used in today's data centers. Cloud environments feature low bandwidth-delay products (BPD) in the case of intra data center communications and high BDP in the case of inter data center communications. We have developed analytical models to study the performance of a Cubic connection in isolation or a set of competing Cubic connections. Our models turn out to be precise in the low BDP case but fail at capturing the synchronization of losses that ns-2 simulations reveal in the high BDP case. We have complemented our simulations studies with tests in real environments: (i) an experimental network at I3S and (ii) a cloud solution available internally at Orange: Cube. Studies performed in Cube have highlighted the high correlation that might exist between network and system performance and the complexity to analyze the performance of applications in a cloud context. Studies in the controlled environment of I3S have confirmed the existence of synchronization and enabled us to identify its condition of appearance. We further investigated two types of solution to combat synchronization: client level solutions that entail modifications of TCP and network level solutions based on queue management solutions, in particular PIE and Codel.
|
95 |
Le noyau-bulle de 34Si : Un outil expérimental pour étudier l’interaction spin-orbite ? / The 34Si bubble nucleus : An experimental tool to study the spin-orbit interaction ?Mutschler, Aurélie 08 September 2015 (has links)
L’interaction spin-orbite a permis de reproduire dans les modèles nucléaires théoriques, les nombres magiques N=28 et 50 observés dans les noyaux atomiques. Ces dernières décennies, l’étude expérimentale de noyaux exotiques a mis en évidence une évolution des nombres magiques loin de la vallée de stabilité. On peut alors se poser la question de l’évolution des potentiels d’interaction eux-mêmes, et en particulier de l’interaction spin-orbite. Si cette interaction a été historiquement incluse « à la main » dans les modèles de champ moyen « classiques », elle émerge cependant naturellement dans les modèles relativistes. La description de l’interaction spin-orbite est très similaire dans ces deux types de modèles, mais il subsiste a priori un désaccord du point de vue de sa dépendance en isospin : les modèles non-relativistes de type Hartree-Fock présentent en effet un potentiel spin-orbite dépendant fortement de l’isospin, contrairement aux modèles de type Relativistic Mean Field.En 2009, des calculs mettant en œuvre différents modèles théoriques ont prédit l’existence d’une « bulle », caractérisée par une déplétion en densité protonique centrale, dans le ³⁴Si. Ce dernier aurait une densité protonique très exotique, et bien différente de sa densité neutronique. Le ³⁴Si constituerait alors une sonde idéale de l’évolution du potentiel spin-orbite dans les systèmes présentant une forte asymétrie protons-neutrons. L’émergence d’un tel effet trouverait son origine dans la déplétion de l’orbitale protonique2s½, les orbitales s étant les seules à contribuer à la densité nucléaire centrale.Une expérience réalisée en Septembre 2012 à NSCL (MSU, Etats-Unis), a permis de mettre en évidence pour la première fois un effet de bulle nucléaire dans le ³⁴Si. L’étude des facteurs spectroscopiques des états peuplés lors des réactions d’arrachage de proton ou de neutron ³⁴Si(-1p) ³³Al et ³⁴Si(-1n) ³³Si indique que sa structure neutronique est très proche d’un système sans corrélations au-delà du champ moyen, tandis que son orbitale protonique est très faiblement occupée : n(2s½) = 0,16(4).Les réactions ³⁶S(-1p) ³⁵P et ³⁶S(-1n) ³⁵S ont été étudiées dans les mêmes conditions expérimentales. L’évolution de l’occupation n(2s½) mesurée entre le ³⁶S et le ³⁴Si, ainsi que la variation de l’écart en énergie des partenaires spin-orbite neutroniques 2p½-2p^3/2, mesurée entre ces deux noyaux dans une expérience antérieure, sont en faveur des modèles de champ moyen non-relativistes. La partie théorique de cette thèse a cependant montré que la différence de comportement de l’interaction spin-orbite entre modèles relativistes et non-relativistes est en fait un artefact causé par l’omission du terme d’échange dans les calculs de type Relativistic Mean Field. En effet, l’inclusion du terme de Fock dans les modèles relativistes permet de rétablir la dépendance en isospin du potentiel spin-orbite observée dans le cas non-relativiste. / The spin-orbit interaction is essential for the reproduction of magic numbers N=28 and 50 in theoretical nuclear models. Over the past few decades, the experimental study of exotic nuclei has highlighted an evolution of magic numbers far from stability. One can then wonder about the evolution of nuclear potentials themselves, and in particular the one of spin-orbit interaction. Historically, this interaction was included « by hand » in mean field models, whereas it naturally arises in relativistic mean field models. The description of the spin-orbit interaction happens to be very similar in those two kinds of models, but there remains a disagreement regarding its isospin dependance. Indeed, Hartree-Fock models exhibit a spin-orbit potential which strongly depends on isospin, contrary to relativistic mean field models.In 2009, a proton bubble was predicted in ³⁴Si by means of several different nuclear models. This effect consists in a central proton central density depletion. ³⁴Si would exhibit a quite exotic proton density, and very different from its neutron density. This nucleus would then constitute an ideal probe to test the behaviour of the spin-orbit potential in systems with strong proton-neutron asymmetry. The appearance of such an effect would originate from the depletion of proton 2s½ orbitals, as s orbitals are the only ones contributing to the central density.An experiment which was performed in September 2012 at NSCL (MSU, United States) highlighted for the first time a proton bubble in ³⁴Si. The spectroscopic strengths of states populated in the knockout reactions ³⁴Si(-1p)³³Al and ³⁴Si(-1n)³³Si reveal that the neutron structure of ³⁴Si is close to the one of a system without beyond-mean-field correlations, whereas its proton orbital is only weakly occupied : n(2s½) = 0,16(4).The reactions ³⁶S(-1p)³⁵P and ³⁶S(-1n)³⁵S were studied in similar experimental conditions. The change in occupancy n(2s½) measured between ³⁶S and ³⁴Si, as well as the variation in the neutron spin-orbit splitting 2p½-2p^3/2 measured in an earlier experiment, suggest that non-relativistic models exhibit the right isospin dependance. The theoretical part of this thesis showed however that the difference in behaviour of the spin-orbit interaction between relativistic and non-relativistic model is actually an artefact caused by the omission of the exchange term in relativistic mean field calculations. Indeed, including the Fock term in relativistic models enables to restore the isospin dependance observed in the non-relativistic case.
|
96 |
A regularized stationary mean-field gameYang, Xianjin 19 April 2016 (has links)
In the thesis, we discuss the existence and numerical approximations of solutions of a regularized mean-field game with a low-order regularization. In the first part, we prove a priori estimates and use the continuation method to obtain the existence of a solution with a positive density. Finally, we introduce the monotone flow method and solve the system numerically.
|
97 |
Phase Transitions Between Asynchronous and Synchronous Neural Dynamics: Theoretical Insight Into the Mechanisms Behind Neural Oscillations in Parkinson's DiseaseGast, Richard 07 December 2021 (has links)
In Parkinson's disease (PD), large parts of the brain transition into states of enhanced neural synchronization.
These phase transitions have been associated with the death of dopaminergic neurons as well as with impaired motor function.
In this thesis, we address the much-debated question of how parkinsonian synchronization depends on dopamine depletion in the basal ganglia (BG).
To this end, we develop spiking neural network (SNN) models of BG circuits and study them via bifurcation analysis.
First, we derive mean-field models that allow to account for various forms of short-term plasticity in SNNs.
We show that such short-term plasticity mechanisms can lead to highly synchronous, periodic bursting dynamics and discuss the relevance of this bursting regime for PD.
Second, we find that the external pallidum, an important part of the BG, cannot cause parkinsonian oscillations autonomously.
However, our results suggest that the external pallidum may contribute to the emergence of cross-frequency coupling that has been reported for parkinsonian oscillations.
Finally, we describe an open-source Python toolbox that we developed to implement and analyze mean-field models of neural dynamics.
Together, this thesis provides insight into BG synchronization processes as well as the mathematical basis and software for future studies of neural synchronization.:1 Introduction
1.1 A complex systems perspective of the brain
1.2 Brain function and the phase transition to synchronized neural activity
1.3 Low-dimensional manifolds of synchronized neural activity
1.4 Phase transitions to synchronized neural activity in Parkinson’s disease
1.5 Thesis overview
2 Mathematical Models and Methods
2.1 A non-linear oscillator model of neural activity
2.2 Dynamical systems methods for the study of neural network models
2.3 Dynamics of a single QIF neuron
3 Low-Dimensional Dynamics in Spiking Neural Networks
3.1 Mean-field approaches in neuroscience
3.2 Dynamics of QIF networks with post-synaptic STP
3.3 Dynamics of QIF networks with spike-frequency adaptation
3.4 Mean-field dynamics of QIF networks with pre-synaptic STP
3.5 Discussion
4 Phase Transitions and Neural Synchronization in the External Pallidum
4.1 A new perspective on GPe structure and function
4.2 GPe model definition and analysis
4.3 Phase transitions in the GPe under static and periodic input
4.4 Discussion
5. Modeling of Neural Mean-Field Dynamics Via PyRates
5.1 Computational modeling in neuroscience
5.2 The Framework
5.3 Pre-implemented methods for neural modeling workflows
5.4 Results
5.5 Discussion
6. Conclusion and Outlook
|
98 |
Contributions à la théorie des jeux à champ moyen / Optimal stopping problem in mean field gamesBertucci, Charles 11 December 2018 (has links)
Cette thèse porte sur l’étude de nouveaux modèles de jeux à champ moyen. On étudie dans un premier temps des modèles d’arrêt optimal et de contrôle impulsionnel en l’absence de bruit commun. On construit pour ces modèles une notion de solution adaptée pour laquelle on prouve des résultats d’existence et d’unicité sous des hypothèses naturelles. Ensuite, on s’intéresse à plusieurs propriétés des jeux à champ moyen. On étudie la limite de ces modèles vers des modèles d’évolution pures lorsque l’anticipation des joueurs tend vers 0. On montre l’unicité des équilibres pour des systèmes fortement couples (couples par les stratégies) sous certaines hypothèses. On prouve ensuite certains résultats de régularités sur une ”master equation” qui modélise un jeu à champ moyen avec bruit commun dans un espace d’états discret. Par la suite on présente une généralisation de l’algorithme standard d’Uzawa et on l’applique à la résolution numérique de certains modèles de jeux à champ moyen, notamment d’arrêt optimal ou de contrôle impulsionnel. Enfin on présente un cas concret de jeu à champ moyen qui provient de problèmes faisant intervenir un grand nombre d’appareils connectés dans les télécommunications. / This thesis is concerned with new models of mean field games. First, we study models of optimal stopping and impulse control in the case when there is no common noise. We build an appropriate notion of solutions for those models. We prove the existence and the uniqueness of such solutions under natural assumptions. Then, we are interested with several properties of mean field games. We study the limit of such models when the anticipation of the players vanishes. We show that uniqueness holds for strongly coupled mean field games (coupled via strategies) under certain assumptions. We then prove some regularity results for the master equation in a discrete state space case with common noise. We continue by giving a generalization of Uzawa’s algorithm and we apply it to solve numerically some mean field games, especially optimal stopping and impulse control problems. The last chapter presents an application of mean field games. This application originates from problems in telecommunications which involve a huge number of connected devices.
|
99 |
Modélisation de grands réseaux de neurones par processus de Hawkes / Modelling large neural networks via Hawkes processesChevallier, Julien 09 September 2016 (has links)
Comment fonctionne le cerveau ? Peut-on créer un cerveau artificiel ? Une étape essentielle en vue d'obtenir une réponse à ces questions est la modélisation mathématique des phénomènes à l'œuvre dans le cerveau. Ce manuscrit se focalise sur l'étude de modèles de réseaux de neurones inspirés de la réalité.Cette thèse se place à la rencontre entre trois grands domaines des mathématiques - l'étude des équations aux dérivées partielles (EDP), les probabilités et la statistique - et s'intéresse à leur application en neurobiologie. Dans un premier temps, nous établissons les liens qui existent entre deux échelles de modélisation neurobiologique. À un niveau microscopique, l'activité électrique de chaque neurone est représentée par un processus ponctuel. À une plus grande échelle, un système d'EDP structuré en âge décrit la dynamique moyenne de ces activités. Il est alors montré que le modèle macroscopique peut se retrouver de deux manières distinctes : en étudiant la dynamique moyenne d'un neurone typique ou bien en étudiant la dynamique d'un réseau de $n$ neurones en champ-moyen quand $n$ tend vers l’infini. Dans le second cas, la convergence vers une dynamique limite est démontrée et les fluctuations de la dynamique microscopique autour de cette limite sont examinées. Dans un second temps, nous construisons une procédure de test d'indépendance entre processus ponctuels, ces derniers étant destinés à modéliser l'activité de certains neurones. Ses performances sont contrôlées théoriquement et vérifiées d'un point de vue pratique par une étude par simulations. Pour finir, notre procédure est appliquée sur de vraies données / How does the brain compute complex tasks? Is it possible to create en artificial brain? In order to answer these questions, a key step is to build mathematical models for information processing in the brain. Hence this manuscript focuses on biological neural networks and their modelling. This thesis lies in between three domains of mathematics - the study of partial differential equations (PDE), probabilities and statistics - and deals with their application to neuroscience. On the one hand, the bridges between two neural network models, involving two different scales, are highlighted. At a microscopic scale, the electrical activity of each neuron is described by a temporal point process. At a larger scale, an age structured system of PDE gives the global activity. There are two ways to derive the macroscopic model (PDE system) starting from the microscopic one: by studying the mean dynamics of one typical neuron or by investigating the dynamics of a mean-field network of $n$ neurons when $n$ goes to infinity. In the second case, we furthermore prove the convergence towards an explicit limit dynamics and inspect the fluctuations of the microscopic dynamics around its limit. On the other hand, a method to detect synchronisations between two or more neurons is proposed. To do so, tests of independence between temporal point processes are constructed. The level of the tests are theoretically controlled and the practical validity of the method is illustrated by a simulation study. Finally, the method is applied on real data
|
100 |
Mean field theory of demand responsive ride pooling systemsHerminghaus, Stephan 25 September 2020 (has links)
The dynamics of demand responsive ride pooling (DRRP) systems is considered in a mean-field framework. The relevant dimensionless quantities determining the performance and viability of the system are identified. In the presence of an already established dominant market participant with comparable service quality (like, e.g., the private car), the mutual interaction of the actors (i.e., the customers sharing rides) by virtue of the route assignment algorithm gives rise to a discontinuous transition between two strongly different modes of operation. One of them represents the typical (unfavorable) performance of current ride pooling systems, while the other represents a new mode of operation in which virtually all customers use DRRP.
|
Page generated in 0.0363 seconds