• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 18
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 30
  • 30
  • 21
  • 12
  • 11
  • 7
  • 6
  • 6
  • 6
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Effects of Mean Stress and Stress Concentration on Fatigue Behavior of Ductile Iron

Meyer, Nicholas January 2014 (has links)
No description available.
22

Efeito da tensão média e frequência na resistência a fadiga e corrosão-fadiga de parafusos prisioneiros de aço inoxidável AISI 304 / The effect of mean stress and frequency on fatigue resistance and corrosion fatigue of stainless steel studs from stainless steel AISI 304

Nery, Macclarck Pessoa 19 January 2018 (has links)
The use of bolts as an element of union has a great importance in industrial situations that need frequent assembling and disassembly. In the present study, the effect of the mean stress and frequency on the fatigue of screw bolts made from cold-formed threaded bars was evaluated. The bolts was made with austenitic stainless steel, AISI 304, and it were tested in two different environments, air and 35g/L NaCl aqueous solution. Initially, tensile testing, chemical analysis, microstructural analysis, x-ray diffraction and hardness were did by the metallurgical characterization. The fatigue tests occurred with mean stress equal to 40% and 60% of yield strength. After the tests, the appearance of the fracture surface was observed. It has been found that the fatigue limit remains unchanged with respect to the mean stress in the air tests at a higher frequency. However, air tests at low frequencies and under corrosion fatigue follow Goodman's prediction. Already, in the tests under corrosion, the higher mean stress tends to decrease the value of the stress amplitude resistant to corrosion fatigue under the conditions applied in the present study. The results were compared with the theoretical models of life expectancy in fatigue and with the results of Burguete and Patterson (1995). / A utilização de parafusos como elementos de união tem grande importância em situações industriais com montagens e desmontagens frequentes. No presente estudo, avaliou-se o efeito da tensão média e frequência de solicitação na fadiga de parafusos prisioneiros confeccionados a partir de barras roscadas conformadas a frio. Fabricados em aço inoxidável austenítico, AISI 304. Os parafusos foram caracterizados através de ensaio de tração, análise química, análise microestrutural, difração de raios x e dureza. Esses parafusos foram testados em dois diferentes ambientes, ao ar e em solução aquosa a 35g/L de NaCl. Os ensaios de fadiga ocorreram com carregamento médio a 40% e 60% da tensão de escoamento. Após os ensaios, o aspecto da superfície de fratura foi observado. A amplitude de tensão de fadiga se mantém inalterada em relação à tensão média nos ensaios ao ar com frequência elevada. No entanto, ensaios ao ar em baixas frequências e corrosão fadiga seguem a previsão de Goodman. Estes ensaios mostraram que a maior tensão média tende a diminuir o valor da tensão alternante resistente à corrosão-fadiga nas condições aplicadas no presente estudo. Os resultados foram comparados com os modelos teóricos de previsão da vida em fadiga e com os resultados de Burguete e Patterson (1995). / São Cristóvão, SE
23

AN EXPERIMENTAL INVESTIGATION ON THE INFLUENCE OF TENSILE MEAN STRESS ON GEAR TOOTH BENDING FATIGUE LIFE

Teaford, Zachary Dean January 2020 (has links)
No description available.
24

Únavové vlastnosti jemnozrnné mědi připravené metodou ECAP / Fatigue Properties of Ultra-fine Grain Copper Produced by ECAP Method

Navrátilová, Lucie January 2008 (has links)
This diploma thesis describes properties of ultra-fine grain Cu prepared via ECAP procedure. The influence of fatigue loading with positive mean stress on S-N curve (i.e. fatigue life), cyclic plastic behaviour and grain size was investigated. It was found that tensile mean stress leads to shorter lifetime in comparison with fatigue loading with zero mean stress. During main part of the lifetime, significant hardening of UFG Cu was observed. There is no distinct effect on microstructural orientation and stability.
25

Beanspruchung und Tragfähigkeit von Plankerbverzahnungen mit zentraler und dezentraler Verschraubung

Grams, Sebastian 14 March 2016 (has links)
Plankerbverzahnungen zählen zu den Vertretern der Kupplungsverzahnungen, mit deren Hilfe zwei Bauteile koaxial miteinander verbunden werden können. Neben einer hohen Winkelgenauigkeit zeichnen sie sich durch eine enorme Drehmomentkapazität bei gleichzeitig geringem Montageaufwand aus. Die zur Leistungsübertragung erforderliche Vorspannkraft kann über eine zentrale Spannschraube oder mehrere dezentral, auf einem gemeinsamen Teilkreis, angeordnete Spannschrauben erzeugt werden. Diese Arbeit liefert einen Beitrag zur beanspruchungsgerechten Dimensionierung von Plankerbverzahnungen mit zentraler und dezentraler Verschraubung. Es wird eine Berechnungsmethode zur Bestimmung der Tragfähigkeit des Zahnfußes, der Zahnflanke und der Spannschrauben vorgestellt und anhand von Beispielrechnungen erläutert. Neben den umfangreichen theoretischen Betrachtungen werden die Ergebnisse zahlreicher experimenteller Untersuchungen präsentiert. Diese dienen der Gewinnung von grundlegenden Aussagen zur Stützwirkung und zum Mittelspannungseinfluss an einfach und mehrfach gekerbten Proben sowie zur Verifizierung des Tragfähigkeitsnachweises.
26

The influence of microstructural features on the mechanical properties of Magsimal®-59

Fabian, Robert January 2021 (has links)
No description available.
27

Deformation History and Load Sequence Effects on Cumulative Fatigue Damage and Life Predictions

Colin, Julie Anne January 2009 (has links)
No description available.
28

Experimental analysis and numerical fatigue modeling for magnesium sheet metals

Dallmeier, Johannes 16 September 2016 (has links) (PDF)
The desire for energy and resource savings brings magnesium alloys as lightweight materials with high specific strength more and more into the focus. Most structural components are subjected to cyclic loading. In the course of computer aided product development, a numerical prediction of the fatigue life under these conditions must be provided. For this reason, the mechanical properties of the considered material must be examined in detail. Wrought magnesium semifinished products, e.g. magnesium sheet metals, typically reveal strong basal textures and thus, the mechanical behavior considerably differs from that of the well-established magnesium die castings. Magnesium sheet metals reveal a distinct difference in the tensile and compressive yield stress, leading to non-symmetric sigmoidal hysteresis loops within the elasto-plastic load range. These unusual hysteresis shapes are caused by cyclic twinning and detwinning. Furthermore, wrought magnesium alloys reveal pseudoelastic behavior, leading to nonlinear unloading curves. Another interesting effect is the formation of local twin bands during compressive loading. Nevertheless, only little information can be found on the numerical fatigue analysis of wrought magnesium alloys up to now. The aim of this thesis is the investigation of the mechanical properties of wrought magnesium alloys and the development of an appropriate fatigue model. For this purpose, twin roll cast AM50 as well as AZ31B sheet metals and extruded ME21 sheet metals were used. Mechanical tests were carried out to present a comprehensive overview of the quasi-static and cyclic material behavior. The microstructure was captured on sheet metals before and after loading to evaluate the correlation between the microstructure, the texture, and the mechanical properties. Stress- and strain-controlled loading ratios and strain-controlled experiments with variable amplitudes were performed. Tests were carried out along and transverse to the manufacturing direction to consider the influence of the anisotropy. Special focus was given to sigmoidal hysteresis loops and their influence on the fatigue life. A detailed numerical description of hysteresis loops is necessary for numerical fatigue analyses. For this, a one-dimensional phenomenological model was developed for elasto-plastic strain-controlled constant and variable amplitude loading. This model consists of a three-component equation, which considers elastic, plastic, and pseudoelastic strain components. Considering different magnesium alloys, good correlation is reached between numerically and experimentally determined hysteresis loops by means of different constant and variable amplitude load-time functions. For a numerical fatigue life analysis, an energy based fatigue parameter has been developed. It is denoted by “combined strain energy density per cycle” and consists of a summation of the plastic strain energy density per cycle and the 25 % weighted tensile elastic strain energy density per cycle. The weighting represents the material specific mean stress sensitivity. Applying the energy based fatigue parameter on modeled hysteresis loops, the fatigue life is predicted adequately for constant and variable amplitude loading including mean strain and mean stress effects. The combined strain energy density per cycle achieves significantly better results in comparison to conventional fatigue models such as the Smith-Watson-Topper model. The developed phenomenological model in combination with the combined strain energy density per cycle is able to carry out numerical fatigue life analyses on magnesium sheet metals.
29

Experimental analysis and numerical fatigue modeling for magnesium sheet metals

Dallmeier, Johannes 09 May 2016 (has links)
The desire for energy and resource savings brings magnesium alloys as lightweight materials with high specific strength more and more into the focus. Most structural components are subjected to cyclic loading. In the course of computer aided product development, a numerical prediction of the fatigue life under these conditions must be provided. For this reason, the mechanical properties of the considered material must be examined in detail. Wrought magnesium semifinished products, e.g. magnesium sheet metals, typically reveal strong basal textures and thus, the mechanical behavior considerably differs from that of the well-established magnesium die castings. Magnesium sheet metals reveal a distinct difference in the tensile and compressive yield stress, leading to non-symmetric sigmoidal hysteresis loops within the elasto-plastic load range. These unusual hysteresis shapes are caused by cyclic twinning and detwinning. Furthermore, wrought magnesium alloys reveal pseudoelastic behavior, leading to nonlinear unloading curves. Another interesting effect is the formation of local twin bands during compressive loading. Nevertheless, only little information can be found on the numerical fatigue analysis of wrought magnesium alloys up to now. The aim of this thesis is the investigation of the mechanical properties of wrought magnesium alloys and the development of an appropriate fatigue model. For this purpose, twin roll cast AM50 as well as AZ31B sheet metals and extruded ME21 sheet metals were used. Mechanical tests were carried out to present a comprehensive overview of the quasi-static and cyclic material behavior. The microstructure was captured on sheet metals before and after loading to evaluate the correlation between the microstructure, the texture, and the mechanical properties. Stress- and strain-controlled loading ratios and strain-controlled experiments with variable amplitudes were performed. Tests were carried out along and transverse to the manufacturing direction to consider the influence of the anisotropy. Special focus was given to sigmoidal hysteresis loops and their influence on the fatigue life. A detailed numerical description of hysteresis loops is necessary for numerical fatigue analyses. For this, a one-dimensional phenomenological model was developed for elasto-plastic strain-controlled constant and variable amplitude loading. This model consists of a three-component equation, which considers elastic, plastic, and pseudoelastic strain components. Considering different magnesium alloys, good correlation is reached between numerically and experimentally determined hysteresis loops by means of different constant and variable amplitude load-time functions. For a numerical fatigue life analysis, an energy based fatigue parameter has been developed. It is denoted by “combined strain energy density per cycle” and consists of a summation of the plastic strain energy density per cycle and the 25 % weighted tensile elastic strain energy density per cycle. The weighting represents the material specific mean stress sensitivity. Applying the energy based fatigue parameter on modeled hysteresis loops, the fatigue life is predicted adequately for constant and variable amplitude loading including mean strain and mean stress effects. The combined strain energy density per cycle achieves significantly better results in comparison to conventional fatigue models such as the Smith-Watson-Topper model. The developed phenomenological model in combination with the combined strain energy density per cycle is able to carry out numerical fatigue life analyses on magnesium sheet metals.
30

ENSURING FATIGUE PERFORMANCE VIA LOCATION-SPECIFIC LIFING IN AEROSPACE COMPONENTS MADE OF TITANIUM ALLOYS AND NICKEL-BASE SUPERALLOYS

Ritwik Bandyopadhyay (8741097) 21 April 2020 (has links)
<div>In this thesis, the role of location-specific microstructural features in the fatigue performance of the safety-critical aerospace components made of Nickel (Ni)-base superalloys and linear friction welded (LFW) Titanium (Ti) alloys has been studied using crystal plasticity finite element (CPFE) simulations, energy dispersive X-ray diffraction (EDD), backscatter electron (BSE) images and digital image correlation (DIC).</div><div><br></div><div>In order to develop a microstructure-sensitive fatigue life prediction framework, first, it is essential to build trust in the quantitative prediction from CPFE analysis by quantifying uncertainties in the mechanical response from CPFE simulations. Second, it is necessary to construct a unified fatigue life prediction metric, applicable to multiple material systems; and a calibration strategy of the unified fatigue life model parameter accounting for uncertainties originating from CPFE simulations and inherent in the experimental calibration dataset. To achieve the first task, a genetic algorithm framework is used to obtain the statistical distributions of the crystal plasticity (CP) parameters. Subsequently, these distributions are used in a first-order, second-moment method to compute the mean and the standard deviation for the stress along the loading direction (σ_load), plastic strain accumulation (PSA), and stored plastic strain energy density (SPSED). The results suggest that an ~10% variability in σ_load and 20%-25% variability in the PSA and SPSED values may exist due to the uncertainty in the CP parameter estimation. Further, the contribution of a specific CP parameter to the overall uncertainty is path-dependent and varies based on the load step under consideration. To accomplish the second goal, in this thesis, it is postulated that a critical value of the SPSED is associated with fatigue failure in metals and independent of the applied load. Unlike the classical approach of estimating the (homogenized) SPSED as the cumulative area enclosed within the macroscopic stress-strain hysteresis loops, CPFE simulations are used to compute the (local) SPSED at each material point within polycrystalline aggregates of 718Plus, an additively manufactured Ni-base superalloy. A Bayesian inference method is utilized to calibrate the critical SPSED, which is subsequently used to predict fatigue lives at nine different strain ranges, including strain ratios of 0.05 and -1, using nine statistically equivalent microstructures. For each strain range, the predicted lives from all simulated microstructures follow a log-normal distribution; for a given strain ratio, the predicted scatter is seen to be increasing with decreasing strain amplitude and are indicative of the scatter observed in the fatigue experiments. Further, the log-normal mean lives at each strain range are in good agreement with the experimental evidence. Since the critical SPSED captures the experimental data with reasonable accuracy across various loading regimes, it is hypothesized to be a material property and sufficient to predict the fatigue life.</div><div><br></div><div>Inclusions are unavoidable in Ni-base superalloys, which lead to two competing failure modes, namely inclusion- and matrix-driven failures. Each factor related to the inclusion, which may contribute to crack initiation, is isolated and systematically investigated within RR1000, a powder metallurgy produced Ni-base superalloy, using CPFE simulations. Specifically, the role of the inclusion stiffness, loading regime, loading direction, a debonded region in the inclusion-matrix interface, microstructural variability around the inclusion, inclusion size, dissimilar coefficient of thermal expansion (CTE), temperature, residual stress, and distance of the inclusion from the free surface are studied in the emergence of two failure modes. The CPFE analysis indicates that the emergence of a failure mode is an outcome of the complex interaction between the aforementioned factors. However, the possibility of a higher probability of failure due to inclusions is observed with increasing temperature, if the CTE of the inclusion is higher than the matrix, and vice versa. Any overall correlation between the inclusion size and its propensity for damage is not found, based on inclusion that is of the order of the mean grain size. Further, the CPFE simulations indicate that the surface inclusions are more damaging than the interior inclusions for similar surrounding microstructures. These observations are utilized to instantiate twenty realistic statistically equivalent microstructures of RR1000 – ten containing inclusions and remaining ten without inclusions. Using CPFE simulations with these microstructures at four different temperatures and three strain ranges for each temperature, the critical SPSED is calibrated as a function of temperature for RR1000. The results suggest that critical SPSED decreases almost linearly with increasing temperature and is appropriate to predict the realistic emergence of the competing failure modes as a function of applied strain range and temperature.</div><div><br></div><div>LFW process leads to the development of significant residual stress in the components, and the role of residual stress in the fatigue performance of materials cannot be overstated. Hence, to ensure fatigue performance of the LFW Ti alloys, residual strains in LFW of similar (Ti-6Al-4V welded to Ti-6Al-4V or Ti64-Ti64) and dissimilar (Ti-6Al-4V welded to Ti-5Al-5V-5Mo-3Cr or Ti64-Ti5553) Ti alloys have been characterized using EDD. For each type of LFW, one sample is chosen in the as-welded (AW) condition and another sample is selected after a post-weld heat treatment (HT). Residual strains have been separately studied in the alpha and beta phases of the material, and five components (three axial and two shear) have been reported in each case. In-plane axial components of the residual strains show a smooth and symmetric behavior about the weld center for the Ti64-Ti64 LFW samples in the AW condition, whereas these components in the Ti64-Ti5553 LFW sample show a symmetric trend with jump discontinuities. Such jump discontinuities, observed in both the AW and HT conditions of the Ti64-Ti5553 samples, suggest different strain-free lattice parameters in the weld region and the parent material. In contrast, the results from the Ti64-Ti64 LFW samples in both AW and HT conditions suggest nearly uniform strain-free lattice parameters throughout the weld region. The observed trends in the in-plane axial residual strain components have been rationalized by the corresponding microstructural changes and variations across the weld region via BSE images. </div><div><br></div><div>In the literature, fatigue crack initiation in the LFW Ti-6Al-4V specimens does not usually take place in the seemingly weakest location, i.e., the weld region. From the BSE images, Ti-6Al-4V microstructure, at a distance from the weld-center, which is typically associated with crack initiation in the literature, are identified in both AW and HT samples and found to be identical, specifically, equiaxed alpha grains with beta phases present at the alpha grain boundaries and triple points. Hence, subsequent fatigue performance in LFW Ti-6Al-4V is analyzed considering the equiaxed alpha microstructure.</div><div><br></div><div>The LFW components made of Ti-6Al-4V are often designed for high cycle fatigue performance under high mean stress or high R ratios. In engineering practice, mean stress corrections are employed to assess the fatigue performance of a material or structure; albeit this is problematic for Ti-6Al-4V, which experiences anomalous behavior at high R ratios. To address this problem, high cycle fatigue analyses are performed on two Ti-6Al-4V specimens with equiaxed alpha microstructures at a high R ratio. In one specimen, two micro-textured regions (MTRs) having their c-axes near-parallel and perpendicular to the loading direction are identified. High-resolution DIC is performed in the MTRs to study grain-level strain localization. In the other specimen, DIC is performed on a larger area, and crack initiation is observed in a random-textured region. To accompany the experiments, CPFE simulations are performed to investigate the mechanistic aspects of crack initiation, and the relative activity of different families of slip systems as a function of R ratio. A critical soft-hard-soft grain combination is associated with crack initiation indicating possible dwell effect at high R ratios, which could be attributed to the high-applied mean stress and high creep sensitivity of Ti-6Al-4V at room temperature. Further, simulations indicated more heterogeneous deformation, specifically the activation of multiple families of slip systems with fewer grains being plasticized, at higher R ratios. Such behavior is exacerbated within MTRs, especially the MTR composed of grains with their c-axes near parallel to the loading direction. These features of micro-plasticity make the high R ratio regime more vulnerable to fatigue damage accumulation and justify the anomalous mean stress behavior experienced by Ti-6Al-4V at high R ratios.</div><div><br></div>

Page generated in 0.076 seconds