• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 88
  • 9
  • 9
  • 9
  • 9
  • 9
  • 9
  • 9
  • 7
  • 3
  • 3
  • 1
  • 1
  • 1
  • Tagged with
  • 123
  • 123
  • 30
  • 28
  • 18
  • 14
  • 12
  • 10
  • 9
  • 8
  • 8
  • 8
  • 8
  • 7
  • 7
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
101

Trustworthy, Useful Languages for Probabilistic Modeling and Inference

Toronto, Neil B. 12 June 2014 (has links) (PDF)
The ideals of exact modeling, and of putting off approximations as long as possible, make Bayesian practice both successful and difficult. Languages for modeling probabilistic processes, whose implementations answer questions about them under asserted conditions, promise to ease much of the difficulty. Unfortunately, very few of these languages have mathematical specifications. This makes them difficult to trust: there is no way to distinguish between an implementation error and a feature, and there is no standard by which to prove optimizations correct. Further, because the languages are based on the incomplete theories of probability typically used in Bayesian practice, they place seemingly artificial restrictions on legal programs and questions, such as disallowing unbounded recursion and allowing only simple equality conditions. We prove it is possible to make trustworthy probabilistic languages for Bayesian practice by using functional programming theory to define them mathematically and prove them correct. The specifications interpret programs using measure-theoretic probability, which is a complete enough theory of probability that we do not need to restrict programs or conditions. We demonstrate that these trustworthy languages are useful by implementing them, and using them to model and answer questions about typical probabilistic processes. We also model and answer questions about processes that are either difficult or impossible to reason about precisely using typical Bayesian mathematical tools.
102

The Geometry of Rectifiable and Unrectifiable Sets

Donzella, Michael A. 08 July 2014 (has links)
No description available.
103

Problèmes de transport optimal avec pénalisation en gradient / Optimal transport problems with gradient penalization

Louet, Jean 02 July 2014 (has links)
Le problème du transport optimal, originellement introduit par Monge au 18ème siècle, consiste à minimiser l'énergie nécessaire au déplacement d'une masse dont la répartition est donnée vers une autre masse dont la répartition est elle aussi donnée; mathématiquement, cela se traduit par : trouver le minimiseur de l'intégrale de c(x,T(x)) (où c est le coût de transport de x vers T(x)) parmi toutes les applications T à mesure image prescrite.Cette thèse est consacrée à l'étude de problèmes variationnels similaires où l'on fait intervenir la matrice jacobienne de la fonction de transport, c'est-à-dire que le coût dépend de trois variables c(x,T(x),DT(x)) ; il s'agit typiquement de rajouter l'intégale de |DT(x)|^2 à la fonctionnelle afin d'obtenir une pénalisation Sobolev. Ce type de problème trouve ses motivations en mécanique des milieux continus, élasticité incompressible ou en analyse de forme et appelle d'un point de vue mathématique une approche totalement différente de celle du problème de transport usuel.Les questions suivantes sont envisagées :- bonne définition du problème, notamment de l'énergie de Dirichlet, via les espaces de Sobolev par rapport à une mesure, et résultats d'existence de minimiseurs ;- caractérisation de ces minimiseurs : optimalité du transport croissant sur la droite réelle, et approche du type équation d'Euler-Lagrange en dimension quelconque ;- sélection d'un minimiseur via une procédure de pénalisation du type Gamma-convergence (l'énergie de Dirichlet est mutipliée par un petit paramètre) lorsque le coût de transport est le coût de Monge donné par la distance, pour lequel l'application de transport optimale n'est pas unique ;- autres approches du problème et perspectives : formulation dynamique du type Benamou-Brenier, et formulation duale similaire à celle de Kantorovitch dans le cas du problème du transport optimal usuel. / The optimal transportation problem was originally introduced by Monge in the 18th century; it consists in minimizing the total energy of the displacement of a given repartition of mass onto another given repartition of mass. This is mathematically expressed by: find the minimizer of the integral of c(x,T(x)) (where c(x,T(x)) is the cost to send x onto T(x)) among the maps T with prescribed image measure.This thesis is devoted to similar variational problems, which involve the Jacobian matrix of the transport map, meaning that the cost depends on three variables c(x,T(x),DT(x)); we typically add the Dirichlet energy to the transport functional in view to obtain a Sobolev-type penalization. This kind of constraints finds its motivations in continuum mechanics, incompressible elasticity or shape analysis, and a quite different mathematical approach than in the usual theory of optimal transportation is needed.We consider the following questions:- proper definition of the problem, in particular of the Dirichlet energy, thanks to the theory of Sobolev spaces with respect to a measure, and existence results;- characterizations of these minimizers: optimality of the monotone transport map on the real line, and Euler-Lagrange-like approach in any dimension;- selection of a minimizer via a Gamma-convergence-like penalization procedure (we multiply the Dirihlet energy with a vanishing positive parameter) where the transport cost is the Monge cost given by the distance (for which the optimal transport map is not unique);- other related problems and perspectives: dynamic Benamou-Brenier-like formulation, and dual Kantorovich-like formulation.
104

Structure microscopique et propriétés interfaciales de fluides confinés dans des matériaux poreux de diverses géométries / Microscopic structure and interfacial properties of confined fluids into porous material of various geometries

Bernet, Thomas 28 September 2018 (has links)
L’étude du phénomène d’adsorption peut être réalisée théoriquement dans le cadre de la physique statistique, à l’échelle microscopique, en mettant en jeu une interface entre un fluide et un solide. L’objectif de cette thèse est de proposer une modélisation moléculaire de fluides tels que le méthane, confinés dans des matériaux poreux de géométrie quelconque. Le cadre théorique est ainsi directement développé à l’échelle microscopique et ses résultats sont confrontés à ceux obtenus avec des simulations moléculaires. À l’échelle macroscopique, le formalisme théorique nous permet de retrouver des résultats expérimentaux tels que des isothermes et des chaleurs d’adsorption.Tout d’abord, nous présentons les principaux résultats de la théorie de la fonctionnelle de la densité classique (cDFT), qui permet de formuler les lois de la physique statistique à partir de la densité du fluide en chaque point de l’espace. Cette théorie permet de décrire des fluides inhomogènes, c’est-à-dire des fluides pour lesquels la densité n’est pas constante en tout point de l’espace. Nous devons également considérer une équation d’état moléculaire de référence. Nous choisissons pour cela la théorie statistique des fluides associatifs (SAFT), formulée à partir de l’énergie libre du système. Le potentiel d’interaction d’une molécule telle que le méthane est alors modélisé comme celui d’une sphère dure entourée d’une couronne attractive. Nous décrivons la sphère dure à l’aide de la théorie de la mesure fondamentale (FMT), qui utilise des densités pondérées, c’est-à-dire des fonctions exprimées en un point de l’espace, mais qui dépendent du voisinage immédiat de ce point. Les fonctions pondérées sont nécessaires pour modéliser les fluides inhomogènes confinés à l’échelle microscopique. L’étude menée à partir de la FMT nous a conduit à définir de nouvelles fonctions pondérées, permettant de décrire des fluides de sphères attractives.Dans ce nouveau cadre théorique, il est nécessaire d’utiliser des approximations dans l’écriture de la fonctionnelle d’énergie libre. Nous proposons quatre approches, avec lesquelles nous pouvons prédire la distribution de la densité du fluide dans l’espace. Ces profils étant décrits à l’échelle microscopique, nous avons réalisé des simulations moléculaires de type Monte Carlo pour en évaluer la qualité par comparaison, pour des systèmes définis à potentiel équivalent. Nous retenons alors une des nouvelles formulations décrivant le fluide inhomogène. Puis, nous nous intéressons à la modélisation du solide. De nombreuses approches utilisent des expressions analytiques des densités pondérées, ce qui ne permet d’étudier que des milieux poreux à géométrie simple et idéale. Dans le cadre de cette thèse, nous écartons ce type d’approche et nous proposons de calculer les densités pondérées à l’aide de transformées de Fourier rapides dans un espace à trois dimensions, pour une forme quelconque de pore. La conséquence numérique de cette approche est que l’on considère un espace de calcul discret. Cela demande alors d’utiliser des résultats mathématiques issus de la géométrie discrète, afin de décrire correctement les interactions entre le fluide et une surface solide discrète quelconque.Cette nouvelle combinaison entre la théorie de la fonctionnelle de la densité et la géométrie discrète permet notamment d’étudier l’adsorption de méthane dans des pores cylindriques de silice. Nous réalisons en même temps des mesures expérimentales avec ce système, en nous servant de nouveaux substrats de silice préalablement caractérisés. Nous comparons alors les isothermes et les chaleurs d’adsorption obtenues expérimentalement aux prédictions théoriques, ce qui valide l’ensemble du formalisme de l’échelle microscopique à l’échelle macroscopique, en nous servant de tous les nouveaux développements que nous présentons dans cette thèse, liés à la modélisation du fluide et à la modélisation du solide. / The study of adsorption, for systems presenting an interface between a fluid and a solid, can be undertaken theoretically with the statistical physics formalism, at the microscopic scale. The objective of this PhD thesis is to propose a molecular modelling of fluids like methane, confined into porous materials of various geometry. This way, the theoretical framework is directly developed at the microscopic scale and its results are compared with molecular simulations. At the macroscopic scale, the theoretical formalism leads us to obtain the same results than experimental measurements of isotherm and heat of adsorption.First of all, the main results of the classical density functional theory (cDFT) - which gives laws of statistical physics with the fluid density in every point of the space - are presented. Inhomogeneous fluids are thus described with this theory. A molecular equation-of-state has also to be considered as a reference. The statistical associating fluid theory (SAFT), formulated with the free energy of the system has been chosen. Then, the interaction potential of a molecule such as methane is described by a hard-sphere surrounded with an attractive range. The hard-sphere is described with the fundamental-measure theory (FMT), using weighted densities, corresponding to functions defined in a point of the space, but depending on the immediate neighbourhood of this point. Weighted functions are necessary for inhomogeneous fluids modelling confined at the microscopic scale. The study undertaken from the FMT led us to define new weighted functions, allowing us to describe fluids of attractive spheres.With this new theoretical framework, it is necessary to use approximations of the free energy functional. Four different approaches are proposed allowing to predict the spatial distribution of the fluid density. Because these profiles are described at the microscopic scale, Monte Carlo molecular simulations have been performed in order to evaluate their quality by comparison, for systems defined with an equivalent potential. Thereby, one of the new formulations describing the inhomogeneous fluid has been selected for its superiority among the others. Then, special attention has been given to the modelling of the solid. Indeed, most of the existing approaches use analytical expressions of weighted densities to that extent, which limits studies to porous media with simple and ideal geometries. In our work, we exclude this kind of approaches and we propose to compute weighted densities with fast Fourier transforms in a three-dimensional space, for any pore geometry. The consequence of this approach is that a numerical discrete space is considered. This implies the use of mathematical results from discrete geometry, in order to correctly compute interactions between the fluid and any discrete solid surface.This new combination of the density functional theory and discrete geometry has allowed us to study methane adsorption into cylindrical pores of silica. To do so, experimental measurements have been performed on new silica substrates specially synthetized and characterised for this thesis. Theoretical predictions were compared with experimental isotherms and heat of adsorption. It allowed to validate the whole formalism presented in this thesis and developed both for the fluid and the solid modelling from the microscopic to the macroscopic scale.
105

Transport branché et structures fractales / Branched transport and fractal structures

Pegon, Paul 21 November 2017 (has links)
Cette thèse est consacrée à l’étude du transport branché, de problèmes variationnels qui y sont liés et de structures fractales qui peuvent y apparaître. Le problème du transport branché consiste à connecter deux mesures de même masse par le biais d’un réseau en minimisant un certain coût, qui sera pour notre étude proportionnel à mLα afin de déplacer une masse m sur une distance L. Plusieurs modèles continus ont été proposés pour formuler le problème, et on s’intéresse plus particulièrement aux deux grands types de modèles statiques : le modèle Lagrangien et le modèle Eulérien, avec une emphase sur le premier. Après avoir posé proprement les bases de ces modèles, on établit rigoureusement leur équivalence en utilisant une décomposition de Smirnov des mesures vectorielles à divergence mesure. On s’intéresse par la suite à un problème d’optimisation de forme lié au transport branché qui consiste à déterminer les ensembles de volume 1 les plus proches de l’origine au sens du transport branché. On démontre l’existence d’une solution, décrite comme un ensemble de sous-niveau de la fonction paysage, désormais standard en transport branché. La régularité Hölder de la fonction paysage, obtenue ici sans hypothèse de régularité a priori sur la solution considérée, permet d’obtenir une borne supérieure sur la dimension de Minkowski de son bord, qui est non-entière et dont on conjecture qu’elle en est la dimension exacte. Des simulations numériques, basées sur une approximation variationnelle à la Modica-Mortola de la fonctionnelle du transport branché, ont été effectuées dans le but d’étayer cette conjecture. Une dernière partie de la thèse se concentre sur la fonction paysage, essentielle à l’étude de problèmes variationnels faisant intervenir le transport branché en ce sens qu’elle apparaît comme une variation première du coût d’irrigation. Le but est d’étendre sa définition et ses propriétés fondamentales au cas d’une source étendue, ce à quoi l’on parvient dans le cas d’un réseau possédant un système fini de racines, par exemple pour des mesures à supports disjoints. On donne une définition satisfaisante de la fonction paysage dans ce cas, qui vérifie en particulier la propriété de variation première et on démontre sa régularité Hölder sous des hypothèses raisonnables sur les mesures à connecter. / This thesis is devoted to the study of branched transport, related variational problems and fractal structures that are likely to arise. The branched transport problem consists in connecting two measures of same mass through a network minimizing a certain cost, which in our study will be proportional to mLα in order to move a mass m over a distance L. Several continuous models have been proposed to formulate this problem, and we focus on the two main static models : the Lagrangian and the Eulerian ones, with an emphasis on the first one. After setting properly the bases for these models, we establish rigorously their equivalence using a Smirnov decomposition of vector measures whose divergence is a measure. Secondly, we study a shape optimization problem related to branched transport which consists in finding the sets of unit volume which are closest to the origin in the sense of branched transport. We prove existence of a solution, described as a sublevel set of the landscape function, now standard in branched transport. The Hölder regularity of the landscape function, obtained here without a priori hypotheses on the considered solution, allows us to obtain an upper bound on the Minkowski dimension of its boundary, which is non-integer and which we conjecture to be its exact dimension. Numerical simulations, based on a variational approximation a la Modica-Mortola of the branched transport functional, have been made to support this conjecture. The last part of the thesis focuses on the landscape function, which is essential to the study of variational problems involving branched transport as it appears as a first variation of the irrigation cost. The goal is to extend its definition and fundamental properties to the case of an extended source, which we achieve in the case of networks with finite root systems, for instance if the measures have disjoint supports. We give a satisfying definition of the landscape function in that case, which satisfies the first variation property and we prove its Hölder regularity under reasonable assumptions on the measures we want to connect.
106

Hausdorff Dimension of Shrinking-Target Sets Under Non-Autonomous Systems

Lopez, Marco Antonio 08 1900 (has links)
For a dynamical system on a metric space a shrinking-target set consists of those points whose orbit hit a given ball of shrinking radius infinitely often. Historically such sets originate in Diophantine approximation, in which case they describe the set of well-approximable numbers. One aspect of such sets that is often studied is their Hausdorff dimension. We will show that an analogue of Bowen's dimension formula holds for such sets when they are generated by conformal non-autonomous iterated function systems satisfying some natural assumptions.
107

The Martingale Approach to Financial Mathematics

Rowley, Jordan M 01 June 2019 (has links)
In this thesis, we will develop the fundamental properties of financial mathematics, with a focus on establishing meaningful connections between martingale theory, stochastic calculus, and measure-theoretic probability. We first consider a simple binomial model in discrete time, and assume the impossibility of earning a riskless profit, known as arbitrage. Under this no-arbitrage assumption alone, we stumble upon a strange new probability measure Q, according to which every risky asset is expected to grow as though it were a bond. As it turns out, this measure Q also gives the arbitrage-free pricing formula for every asset on our market. In considering a slightly more complicated model over a finite probability space, we see that Q once again makes its appearance. Finally, in the context of continuous time, we build a framework of stochastic calculus to model the trajectories of asset prices on a finite time interval. Under the absence of arbitrage once more, we see that Q makes its return as a Radon-Nikodym derivative of our initial probability measure. Finally, we use the properties of Q and a stochastic differential equation that models the dynamics of the assets of our market, known as the Ito formula, in order to derive the classic Black-Scholes Equation.
108

Approximations par champs de phases pour des problèmes de transport branché / Phase-field approximation for some branched transportation problems

Ferrari, Luca Alberto Davide 05 October 2018 (has links)
Dans cette thèse, nous concevons des approximations par champ de phase de certains problèmes de Transport Branché. Le Transport Branché est un cadre mathématique pour modéliser des réseaux de distribution offre-demande qui présentent une structure d'arbre. En particulier, le réseau, les usines d'approvisionnement et le lieu de la demande sont modélisés en tant que mesures et le probléme est présenté comme un probléme d'optimisation sous contrainte. Le coût de transport d'une masse m le long d'un bord de longueur L est h(m)xL et le coût total d'un réseau est défini comme la somme de la contribution sur tous ses arcs. Le cas du Transport Branché correspond avec la choix h(m) =|m|^α où α est dans [0,1). La sous-additivité de la fonction cout s'assure que déplacer deux masses conjointement est moins cher que de le faire séparément. Dans ce travail, nous introduisons diverses approximations variationnelles du problème du transport branché. Les fonctionnelles que on vais utiliser sont basées sur une représentation par champ de phase du réseau et sont plus lisses que le problème original, ce qui permet des méthodes d'optimisation numérique efficaces. Nous introduisons une famille des fonctionnelles inspirées par le fonctionnelle de Ambrosio et Tortorelli pour modéliser une fonction de coût h affine dans l'espace R^2. Pour ce cas, nous produisons un résultat complet de Gamma-convergence et nous le corrélons avec une procédure de minimisation alternée pour obtenir des approximations numériques des minimiseurs. Puis nous généralisons cette approche à n'importe quel espace R^n et obtenons un résultat complet de $Gamma$-convergence dans le cas de surfaces k-dimensionnelles avec k<n. En particulier, nous obtenons une approximation variationnelle du problème du Plateau dans n'importe quelle dimension et co-dimension. Dans la dernière partie de la thèse, nous proposons deux approches générales pour des fonctions de coût concave. Dans le premier, nous introduisons une approche par plusieurs champs de phase et récupérons n'importe quelle fonction de coût affine par morceaux. Enfin, nous proposons et étudions une famille de fonctions permettant d'obtenir dans la limite toutes fonction de coût concave h. / In this thesis we devise phase field approximations of some Branched Transportation problems. Branched Transportation is a mathematical framework for modeling supply-demand distribution networks which exhibit tree like structures. In particular the network, the supply factories and the demand location are modeled as measures and the problem is cast as a constrained optimization problem. The transport cost of a mass m along an edge with length L is h(m)xL and the total cost of a network is defined as the sum of the contribution on all its edges. The branched transportation case consists with the specific choice h(m)=|m|^α where α is a value in [0,1). The sub-additivity of the cost function ensures that transporting two masses jointly is cheaper than doing it separately. In this work we introduce various variational approximations of the branched transport optimization problem. The approximating functionals are based on a phase field representation of the network and are smoother than the original problem which allows for efficient numerical optimization methods. We introduce a family of functionals inspired by the Ambrosio and Tortorelli one to model an affine transport cost functions. This approach is firstly used to study the problem any affine cost function h in the ambient space R^2. For this case we produce a full Gamma-convergence result and correlate it with an alternate minimization procedure to obtain numerical approximations of the minimizers. We then generalize this approach to any ambient space and obtain a full Gamma-convergence result in the case of k-dimensional surfaces. In particular, we obtain a variational approximation of the Plateau problem in any dimension and co-dimension. In the last part of the thesis we propose two models for general concave cost functions. In the first one we introduce a multiphase field approach and recover any piecewise affine cost function. Finally we propose and study a family of functionals allowing to recover in the limit any concave cost function h.
109

Regularity of almost minimizing sets / Regularidade dos conjuntos quase minimizantes

Oliveira, Reinaldo Resende de 31 July 2019 (has links)
This work was motivated by the famous Plateau\'s Problem which concerns the existence of a minimizing set of the area functional with prescribed boundary. In order to solve the Plateau\'s Problem, we make use of different theories: the theory of varifolds, currents and locally finite perimeter sets (Caccioppoli sets). Working on the Caccioppoli sets theory, it is straightforward to prove the existence of a minimizing set in some classical problems as the isoperimetric and Plateau\'s problems. If we switch the problem to find the regularity that we can extract of some minimizing set, we come across complicated ideas and tools. Although, the Plateau\'s Problem and other classical problems are well settled. Because of that, we have extensively studied the almost minimizing condition ((; r)-minimizing sets) considered by Maggi ([?]) which subsumes some classical problems. We focused on the regularity theory extracted from this almost minimizing condition. / This work was motivated by the famous Plateau\'s Problem which concerns the existence of a minimizing set of the area functional with prescribed boundary. In order to solve the Plateau\'s Problem, we make use of different theories: the theory of varifolds, currents and locally finite perimeter sets (Caccioppoli sets). Working on the Caccioppoli sets theory, it is straightforward to prove the existence of a minimizing set in some classical problems as the isoperimetric and Plateau\'s problems. If we switch the problem to find the regularity that we can extract of some minimizing set, we come across complicated ideas and tools. Although, the Plateau\'s Problem and other classical problems are well settled. Because of that, we have extensively studied the almost minimizing condition ((; r)-minimizing sets) considered by Maggi ([?]) which subsumes some classical problems. We focused on the regularity theory extracted from this almost minimizing condition.
110

Inégalités isopérimétriques produit pour les élargissements euclidien et uniforme : symétrisation et inégalités fonctionnelles / Product isoperimetric inequalities for the Euclidean and the uniform enlargement : symmetrization and functional inequalities

Huou, Benoit 17 June 2016 (has links)
Le problème isopérimétrique consiste, dans un espace métrique mesuré, à trouver les ensembles qui, à volume fixé, ont la plus petite mesure de surface. Il peut être formulé dans de nombreux cadres (espaces métriques mesurés généraux, variétés riemanniennes à poids, parties de l'espace euclidien...). Deux questions se dégagent de ce problème : - Quels sont les ensembles solutions, c'est-à-dire ayant la plus petite mesure de surface ? (Il faut noter que ces ensembles n'existent pas toujours). - Que vaut la plus petite mesure de surface ? La solution à la deuxième question peut être formulée sous la forme d'une fonction, appelée profil isopérimétrique, qui, à une valeur de volume (pondéré) donnée, associe la plus petite mesure de surface correspondante. La notion de mesure de surface, quant à elle, peut être définie de plusieurs manières (contenu de Minkowski, périmètre géométrique...), toutes dépendant étroitement à la fois de la distance et de la mesure ambiantes. L'objet principal de cette thèse est l'étude du problème isopérimétrique dans des espaces produits, que ce soit pour transférer des inégalités isopérimétriques d'espaces facteurs vers ces produits, ou pour comparer le profil isopérimétrique de l'espace produit à ceux des facteurs. La thèse se découpe en quatre parties : - Étude de l'opération de symétrisation (pour les ensembles) et de réarrangement (pour les fonctions), notions analogues, du point de vue de la théorie de la mesure géométrique et des fonctions à variations bornée. Ces opérations agissent de sorte à ce que n'augmente pas la mesure de surface (pour les ensembles), ou la variation (pour les fonctions). Nous introduisons notamment une nouvelle classe d'espaces modèles, pour lesquels nous obtenons des résultats qualitativement similaires à ceux obtenus pour les espaces modèles classiques : inégalités isopérimétriques transférées aux produits, comparaison d'énergies (pour des fonctionnelles convexes). - Détail d'un argument de minoration du profil isopérimétrique d'un espace métrique produit XxY par une fonction dépendant des profils de X et Y, pour une large classe de distances produits sur XxY. L'étude de ce problème est faite via la minimisation d'une fonctionnelle sur la classe des mesures de Radon. - Étude du problème isopérimétrique dans un espace métrique mesuré produit (le produit d'ordre quelconque du même espace métrique mesuré), muni de la combinaison uniforme de sa distance (élargissement uniforme). Nous donnons un critère pour que tous les profils isopérimétriques (quel que soit l'ordre d'itération du produit) soient minorés par un multiple du minorant du profil isopérimétrique de l'espace originel. Ceci est fait en utilisant notamment des méthodes ayant trait aux inégalités fonctionnelles. Nous appliquons ensuite les résultats aux influences géométriques. - Étude d'inégalités fonctionnelles dites isopérimétriques, permettant d'appréhender le comportement isopérimétrique dans l'espace produit correspondant d'ordre quelconque. Nous résumons l'état des connaissances à propos des inégalités de ce type et proposons une autre méthode qui pourrait aboutir à prouver une telle inégalité dans le cas de mesures réelles particulières, pour lesquelles le problème est ouvert. / The isoperimetric problem in a metric measured space consists in finding the sets having minimal boundary measure, with prescribed volume. It can be formulated in various settings (general metric measured spaces, Riemannian manifolds, submanifolds of the Euclidean space, ...). At this point, two questions arise : - What are the optimal sets, namely the sets having smallest boundary measure (it has to be said that they do not always exist) ? - What is the smallest boundary measure ? The solution to the second answer can be expressed by a function called the isoperimetric profile. This function maps a value of (prescribed) measure onto the corresponding smallest boundary measure. As for the precise notion of boundary measure, it can be defined in different ways (Minkowski content, geometric perimeter, ...), all of them closely linked to the ambient distance and measure. The main object of this thesis is the study of the isoperimetric problem in product spaces, in order to transfer isoperimetric inequalities from factor spaces to the product spaces, or to compare their isoperimetric profiles. The thesis is divided into four parts : - Study of the symmetrization operation (for sets) and the rearrangement operation (for functions), analogous notions, from the point of view of Geometric Measure Theory and Bounded Variation functions. These operations cause the boundary measure to decrease (for sets), or the variation (for functions). We introduce a new class of model spaces, for which we obtain similar results to those concerning classic model spaces : transfer of isoperimetric inequalities to the product spaces, energy comparison (for convex functionals). - Detailed proof of an argument of minorization of the isoperimetric profile of a metric measured product space XxY by a function depending on the profiles of X and Y, for a wide class of product distances over XxY. The study of this problem uses the minimization of a functional defined on Radon measures class. - Study of the isoperimetric problem in a metric measured space (n times the same space) equipped with the uniform combination of its distance (uniform enlargement). We give a condition under which every isoperimetric profile (whatever the order of iteration might be) is bounded from below by a quantity which is proportional to the isoperimetric profile of the underlying space. We then apply the result to geometric influences. - Study of isoperimetric functional inequalities, which give information about the isoperimetric behavior of the product spaces. We give an overview of the results about this kind of inequalities, and suggest a method to prove such an inequality in a particular case of real measures for which the problem reamins open.

Page generated in 0.0515 seconds