• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 110
  • 72
  • 48
  • 2
  • 2
  • Tagged with
  • 278
  • 278
  • 227
  • 139
  • 131
  • 131
  • 131
  • 67
  • 66
  • 64
  • 62
  • 58
  • 54
  • 52
  • 52
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
251

Severe Plastic Deformation Of Age Hardenable Aluminum Alloys

Tan, Evren 01 September 2012 (has links) (PDF)
Industrial products of high-strength Al-alloys are currently manufactured by thermo-mechanical processes, which are only applicable in the integrated plants requiring high investment cost. Moreover, reduction of the average grain size not less than 10 &mu / m and re-adjustment of process parameters for each alloy type is evaluated as disadvantage. Therefore, recently there have been many research studies for development of alternative manufacturing techniques for aluminum alloys. Research activities have shown that it is possible to improve the strength of Al-alloys remarkably by severe plastic deformation which results in ultra-fine grain size. This study aims to design and manufacture the laboratory scale set-ups for severe plastic deformation of aluminum alloys, and to characterize the severely deformed samples. The stages of the study are summarized below: First, for optimization of die design and investigation of parameters affecting the deformation finite element modeling simulations were performed. The effects of process parameters (die geometry, friction coefficient) and material properties (strain hardening, strain-rate sensitivity) were investigated. Next, Equal Channel Angular Pressing (ECAP) system that can severely deform the rod shaped samples were designed and manufactured. The variations in the microstructure and mechanical properties of 2024 Al-alloy rods deformed by ECAP were investigated. Finally, based on the experience gained, a Dissimilar Channel Angular Pressing (DCAP) system for severe plastic deformation of flat products was designed and manufactured / then, 6061 Al-alloy strips were deformed. By performing hardness and tension tests on the strips that were deformed by various passes, the capability of the DCAP set-up for production of ultra-fine grain sized high-strength aluminum flat samples were investigated.
252

Topics in the theory of inhomogeneous media composite superconductors and dielectrics /

Kim, Kwangmoo, January 2007 (has links)
Thesis (Ph. D.)--Ohio State University, 2007. / Title from first page of PDF file. Includes bibliographical references (p. 166-181).
253

Estratégia computacional para avaliação de propriedades mecânicas de concreto de agregado leve

Bonifácio, Aldemon Lage 16 March 2017 (has links)
Submitted by isabela.moljf@hotmail.com (isabela.moljf@hotmail.com) on 2017-06-21T11:44:49Z No. of bitstreams: 1 aldemonlagebonifacio.pdf: 14222882 bytes, checksum: a77833e828dc4a72cf27e6608d6e0c5d (MD5) / Approved for entry into archive by Adriana Oliveira (adriana.oliveira@ufjf.edu.br) on 2017-08-07T19:04:13Z (GMT) No. of bitstreams: 1 aldemonlagebonifacio.pdf: 14222882 bytes, checksum: a77833e828dc4a72cf27e6608d6e0c5d (MD5) / Made available in DSpace on 2017-08-07T19:04:13Z (GMT). No. of bitstreams: 1 aldemonlagebonifacio.pdf: 14222882 bytes, checksum: a77833e828dc4a72cf27e6608d6e0c5d (MD5) Previous issue date: 2017-03-16 / CAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / O concreto feito com agregados leves, ou concreto leve estrutural, é considerado um material de construção versátil, bastante usado em todo o mundo, em diversas áreas da construção civil, tais como, edificações pré-fabricadas, plataformas marítimas, pontes, entre outros. Porém, a modelagem das propriedades mecânicas deste tipo de concreto, tais como o módulo de elasticidade e a resistência a compressão, é complexa devido, principalmente, à heterogeneidade intrínseca aos componentes do material. Um modelo de predição das propriedades mecânicas do concreto de agregado leve pode ajudar a diminuir o tempo e o custo de projetos ao prover dados essenciais para os cálculos estruturais. Para esse fim, este trabalho visa desenvolver uma estratégia computacional para a avaliação de propriedades mecânicas do concreto de agregado leve, por meio da combinação da modelagem computacional do concreto via MEF (Método de Elementos Finitos), do método de inteligência computacional via SVR (Máquina de vetores suporte com regressão, do inglês Support Vector Regression) e via RNA (Redes Neurais Artificiais). Além disso, com base na abordagem de workflow científico e many-task computing, uma ferramenta computacional foi desenvolvida com o propósito de facilitar e automatizar a execução dos experimentos científicos numéricos de predição das propriedades mecânicas. / Concrete made from lightweight aggregates, or lightweight structural concrete, is considered a versatile construction material, widely used throughout the world, in many areas of civil construction, such as prefabricated buildings, offshore platforms, bridges, among others. However, the modeling of the mechanical properties of this type of concrete, such as the modulus of elasticity and the compressive strength, is complex due mainly to the intrinsic heterogeneity of the components of the material. A predictive model of the mechanical properties of lightweight aggregate concrete can help reduce project time and cost by providing essential data for structural calculations. To this end, this work aims to develop a computational strategy for the evaluation of mechanical properties of lightweight concrete by combining the concrete computational modeling via Finite Element Method, the computational intelligence method via Support Vector Regression, and via Artificial Neural Networks. In addition, based on the approachs scientific workflow and many-task computing, a computational tool will be developed with the purpose of facilitating and automating the execution of the numerical scientific experiments of prediction of the mechanical properties.
254

Etude de l'influence des procédés de fabrication sur les propriétés mécaniques des alliages de nickel / Study of effect of welding on mechanical behavior on nickel alloys

Blaizot, Jérôme 25 March 2016 (has links)
Dans l’industrie nucléaire, différents composants des réacteurs à eau pressurisée sont soudés par le procédé TIG (Tungsten Inert Gas). Pour obtenir une résistance à la corrosion et une tenue en service suffisante, ces pièces sont réalisées en alliage base nickel NY690. La compréhension des phénomènes physiques impliqués durant le soudage est nécessaire afin de connaître l’évolution de la microstructure et leur influence sur le comportement mécanique. Pour améliorer la qualité des produits soudés, il est crucial de déterminer les contraintes résiduelles après soudage ce qui implique de connaître le comportement mécanique de l’alliage NY690. En effet, le soudage de ces pièces massives dont l’épaisseur est comprise entre 50 et 250 mm nécessite un grand nombre de passes et donc grand nombre de cycles thermo-mécaniques. Pour reproduire ces chargements complexes se produisant dans la zone affectée thermiquement, des essais mécaniques ont été réalisés en utilisant la machine Gleeble 3500 et une machine de traction/torsion MTS-809. Des essais de traction et des essais cycliques ont été réalisés pour différents états microstructuraux à température ambiante et à 750°C. Plus précisément, l’influence de la taille de grain et de la présence des carbures de chrome sur le comportement mécanique a été étudiée dans le but de déterminer les paramètres à prendre en compte pour modéliser le comportement mécanique. Le comportement mécanique en chargement monotone a ensuite été modélisé en fonction de la température et de la vitesse de déformation en utilisant le formalisme de Kocks-Mecking-Estrin. Ce modèle ensuite été implémenté sous Sysweld pour simuler des expériences de soudage. / Mechanical behavior of nickel alloy 690 (NY690) is characterized from 25°C to 1100°C and for a strain rate ranging from 10-4 to 5×10-3s-1. The effects of chromium carbides and grain size (50-150 µm) on the tensile properties of NY690, were studied at 25°C and 750°C. Chromium carbides have negligible influence on the yield stress and on the strain hardening whereas the grain size slightly decreases the yield stress and the hardening rate at room temperature. The grain size has little influence on the strain-hardening but increases the steady-state stress. The dislocation density is the major microstructural parameter governing the mechanical behavior of the alloy for the studied experimental conditions. The Kocks-Mecking-Estrin formalism is adapted to a wide range of temperature and strain rate to predict the mechanical behavior.
255

Integrated Solar Technologies with Outdoor Pedestrian Bridge Superstructure Decking

Racz, Richard K 23 March 2016 (has links)
Solar technology has been a major topic in sustainable design for many years. In the last five years, however, the solar technology industry has seen a rapid growth in installations and technological advances in cell design. Combined with a rapidly declining overall system cost, the idea of introducing solar technology into a wider range of applications is becoming a focus for engineers and scientists around the world. So many variables which alter solar energy production, such as the sun and surrounding environment, determine whether a solar design is beneficial. This thesis presents a bridge deck surface integrated with solar cells tested under all AASHTO LRFD pedestrian bridge loadings. A detailed solar analysis of the University of Massachusetts’s campus is presented to determine if solar integration is even plausible for the Northeastern United States with the energy limitations created by the deck integration, as well as an economic evaluation of the deck design. The purpose of this thesis was to determine if a walking surface could be integrated with solar technology and be a plausible alternative to conventional walking surfaces, while providing a source of sustainable power.
256

Nanoscale modeling of membrane systems under mechanical deformation in traumatic brain injury using molecular dynamics

Vo, Anh Thi Ngoc 08 August 2023 (has links) (PDF)
Neuronal membrane disruption and mechanoporation are nanoscale damage mechanisms that critically affect brain cell viability during traumatic brain injury (TBI). These nanoscale cellular impairments are elusive in experiments and necessitate in silico approaches such as molecular dynamics (MD) simulations. Implementing MD, this research aims to investigate the effects of different key factors related to membrane deformation and damage, including force field resolutions, lipid compositions, and loading conditions. To examine the impact of force field resolution, MD deformation simulations were conducted on 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphatidylcholine (POPC) lipid bilayer membranes, using all-atom (AA), united-atom (UA), and coarse-grained Martini (CG-M) force fields. The mechanical responses of the three models progressively changed based on the coarse-graining level. The coarser systems exhibited lower yield stresses and failure strains, and higher mechanoporation damage. To study the influence of lipid components, tensile deformation was applied on seven lipid bilayers, each of which contained a different lipid type commonly found in human brain membrane. Larger headgroup structure, greater degree of unsaturation, and tail-length asymmetry decreased lipid packing, increased the area per lipid (APL), and decreased the failure strain of membrane. Lastly, the deformation behavior of a complex multicomponent MD bilayer (realistically representing human neuronal plasma membrane) under different strain rates and strain states was inspected. The yield stress increased with increasing strain rates and more equibiaxial strain states. Meanwhile, lower strain rates resulted in fewer but larger pores, as well as lower strain and APL at failure. Besides, more equibiaxial strain states exhibited more and larger pores, and lower failure strain. Similar failure APL was obtained regardless of strain states, suggesting that the membrane failed when reaching a critical APL value. In addition, the inclusion of cholesterol was shown to decrease the critical APL. The strain-state dependence results were then used to update the Membrane Failure Limit Diagram (MFLD) that indicates the planar strains for potential membrane failure. Overall, the study provides a non-invasive approach that aids in the current understanding of nanoscale neuronal damage dynamics and essential aspects affecting membrane mechanical responses, and furthermore lays the groundwork for future studies on brain injury biomechanics under various TBI scenarios.
257

Vibration-Based Health Monitoring of Multiple-Stage Gear Train and Differential Planetary Transmission Involving Teeth Damage and Backlash Nonlinearity

Sommer, Andrew Patrick 01 September 2011 (has links) (PDF)
The objective of this thesis is to develop vibration-based fault detection strategies for on-line condition monitoring of gear transmission systems. The study divides the thesis into three sections. First of all, the local stresses created by a root fatigue crack on a pinion spur gear are analyzed using a quasi-static finite element model and non-linear contact mechanics simulation. Backlash between gear teeth which is essential to provide better lubrication on tooth surfaces and to eliminate interference is included as a defect and a necessary part of transmission design. The second section is dedicated to fixed axis power trains. Torsional vibration is shown to cause teeth separation and double-sided impacts in unloaded and lightly loaded gearing drives. The transient and steady-state dynamic loading on teeth within a two stage crank-slider mechanism arising from backlash and geometric manufacturing errors is investigated by utilizing a non-linear multi-body dynamics software model. The multi-body model drastically reduces the computation time required by finite element methods to simulate realistic operation. The gears are considered rigid with elastic contact surfaces defined by a penalty based non-linear contact formulation. The third section examines a practical differential planetary transmission which combines two inputs and one output. Planetary gears with only backlash errors are compared to those containing both backlash and tooth defects under different kinematic and loading conditions. Fast Fourier Transform (FFT) analysis shows the appearance of side band modulations and harmonics of the gear mesh frequency. A joint time-frequency analysis (JTFA) during start-up reveals the unique vibration patterns for fixed axis gear train and differential planetary gear, respectively, when the contact forces increase during acceleration.
258

Mode I Fracture Toughness of Eight-Harness-Satin Carbon Cloth Weaves for Co-cured and Post-bonded Laminates

Smith, Josh E 01 December 2013 (has links) (PDF)
Mode I interlaminar fracture of 3k 8-Harness-Satin Carbon cloth, with identical fill and weft yarns, pre-impregnated with Newport 307 resin was investigated through the DCB test (ASTM D5528). Crack propagations along both the fill and weft yarns were considered for both post-bonded (co-bonded) and co-cured laminates. A patent-pending delamination insertion method was compared to the standard Teflon film option to assess its applicability to mode I fracture testing. The Modified Beam Theory, Compliance Calibration method, and Modified Compliance Calibration method were used for comparative purposes for these investigations and to evaluate the validity of the proposed Equivalent Stiffness (EQS) method. Crack propagation, in all specimens, proceeded in a run-arrest manner for both delamination directions. Energy dissipation in the form of transverse yarn debonding, matrix deformation, and out of plane crack growth was witnessed for specimens with delaminations along weft yarns. A complete comparison between post-bonded and co-cured laminates was not achieved. The patent pending delamination insertion method was found to cause fewer instances of non-linear crack initiation behavior than the Teflon insert and, when non-linear behavior did occur, it was less prevalent. The EQS method was found to achieve fracture toughness values within 5% of the other three data reduction methods for 63% of the propagation values and achieved conservative values for over 33% of the propagations. Suggestions for future studies aimed at completing the comparisons above are provided in Chapter 5.
259

Anisotropy Evolution Due to Surface Treatment on 3D-Printed Fused Deposition Modeling (FDM) of Acrylonitrile Butadiene Styrene (ABS)

Lozinski, Blake E 01 January 2017 (has links)
Purpose: This paper will present insight to the methodology and results of the experimental characterization of Acrylonitrile Butadiene Styrene (ABS) using Fused Deposition Modeling (FDM). The work in this research explored the effects of print orientation, surface treatment, and ultraviolet (UV) light degradation with the utilization of Digital Image Correlation (DIC) on ABS tensile specimens. Design/methodology: ABS specimens were printed at three build orientations (flat (0 degrees), 45 degrees, and up-right (90 degrees)). Each of these specimens were treated with three different surface treatments including a control (acrylic paint, Cyanoacrylate, and Diglycidyl Bisphenol A) followed by exposure to UV light to the respective batches. This experiment design will provide tensile direction properties with the effect of thermoset coatings and UV degradation. Dogbone FDM specimens based on ASTM standard D638 type IV were printed on a Stratasys Dimension SST (Soluble Support Technology) 1200es 3D Printer and loaded into a MTS Landmark Servohydraulic Test Systems. Analysis was preformed on the fracture section of the tensile specimens utilized DIC and comparing Ultimate Tensile Strength (UTS) and Ultimate Fracture Strength (UFS). Findings: From the results UV light did not play a large factor in the strength of the specimens. The print orientation showed the largest anisotropic behavior where some specimens experienced as much as a 54% difference in ultimate tensile strength. Thermoset coated specimens experienced a maximum of 2% increase in strength for the Cyanoacrylate and Diglycidyl Bisphenol A specimens where the acrylic paint and natural did not. Several findings were of value when looking at the stress strain plots. Originality/value: This paper provides knowledge to the limited work on print build orientation, thermoset coatings and, UV light on ABS specimens. Very little to no work has been done on these three properties. This paper can serve as the foundation of future work on external applications on ABS plastics.
260

Balkböjning och signalbehandling / Beam bending and signal processing

Forsling Ekblom, Albin, Ohlén, Rickard January 2021 (has links)
I laborationssalarna på KTH i Södertälje, som i huvudsak används till elektrorelaterade ämnen, har det funnits ett antal balkmodeller med monterade töjningsgivare. Dessa har inte använts på många år och det saknas vidare uppgifter om modellerna. Uppdraget bestod av att utarbeta en laboration till KTH:s undervisning. Laborationen skulle handla om balkböjning och signalbehandling, med tonvikt på̊ det senare. Som hjälpmedel skulle vi använda oss av balkmodellerna. I uppdraget ingick det också att undersöka balkmodellernas elektriska och mekaniska egenskaper. Med teknisk balkteori skulle en möjlig relation mellan nedböjning och töjning tas fram. Med balkmodellen i en bryggkoppling kunde dess signal via ett DAQ-kort överföras till en PC och LabVIEW för vidare behandling. I LabVIEW kan ett anpassat gränssnitt tas fram och för visning av valda parametrar. Bryggkopplingen balanseras med hjälp av en potentiometer. I gränssnittet kan spänningsförändringen i bryggan observeras när balken påverkas av nedböjning. Efter kalibrering av systemet kan töjning och nedböjning presenteras efter beräkningar i LabVIEW. För att erhålla en så stabil och brusfri signal som möjligt har gruppen använt sig avbåde ett hårdvarufilter av lågpass-typ och ett mjukvarufilter i LabVIEW. Signalen förstärks med hjälp av en OP-förstärkare innan den matas in i DAQ-kortet. Trots sin ålder kunde balkmodellerna fortfarande användas och ge stabila signaler för vidarebehandling. Modellerna kan med fördel användas i en laboration för studenter och färdigt underlag finns för detta. Laborationen bör öka förståelsen för hur en signal från en givare kan förstärkas, filtreras och behandlas vidare i detta fall för grundläggande hållfasthetsberäkningar. / In the laboratory at KTH in Södertälje, which are mainly used for electro-related subjects, there are a number of beam models with mounted strain gauges. These have not been used for many years and there is no further information about the models. The assignment consisted of preparing a laboratory task for KTH's teaching. The laboratory would consist of beam bending and signal processing, with emphasis on the latter. As an aid, the beam models will be used, these consisted of a fixed aluminum beam with mounted strain gauges. The assignment also includes examining the electrical and mechanical properties of the beam models. With technical beam theory, a possible relationship between deflection and strain would be developed. With the beam model connected in a bridge connection, its signal could be transferred via a DAQ card to a PC and LabVIEW for further processing. In LabVIEW, a custom interface can be created and for displaying selected parameters. The bridge coupling is balanced with the help of a potentiometer. In the interface, the voltage change in the bridge can be observed when the beam is affected by deflection. After calibration of the system in the interface, strain and deflection can be presented according to calculations in LabVIEW. To obtain as stable and noise-free a signal as possible, the group has used both a low-pass hardware filter and a LabVIEW software filter. The signal is amplified by an OP amplifier before being fed into the DAQ card. Despite their age, the beam models could still be used and give stable signals for further treatment. The models can be used to advantage in a laboratory for students and there is a ready basis for this. The laboratory should increase the understanding of how a signal from a sensor can be amplified, filtered and further processed in this case for basic strength calculations.

Page generated in 0.12 seconds