• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 149
  • 12
  • 11
  • 3
  • 2
  • 2
  • 1
  • Tagged with
  • 189
  • 189
  • 189
  • 132
  • 130
  • 43
  • 38
  • 34
  • 31
  • 31
  • 30
  • 26
  • 24
  • 20
  • 16
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
181

Automatic multimodal real-time tracking for image plane alignment in interventional Magnetic Resonance Imaging / Suivi temps-réel automatique multimodal pour l'alignement des plans de coupe en IRM interventionnelle

Neumann, Markus 25 February 2014 (has links)
En imagerie par résonance magnétique (IRM) interventionnelle, des interventions percutanées minimalement-invasives (biopsies, ablations de tumeurs,...) sont réalisées sous guidage IRM. Lors de l’intervention, les plans de coupe acquis sont alignés sur l’outil chirurgical et les régions anatomiques d’intérêt afin de surveiller la progression de l’outil dans le corps du patient en temps réel. Le suivi d’objets dans l’IRM facilite et accélère les interventions guidées par IRM en permettant d’aligner automatiquement les plans de coupe avec l’outil chirurgical. Dans cette thèse, un système d’alignement automatique des plans de coupe établi sur une séquence IRM clinique est développé. Celui-ci réalise automatiquement la détection et le suivi d’un marqueur passif directement dans les images IRM tout en minimisant le temps d’imagerie dédié à la détection. L’inconvénient principal de cette approche est sa dépendance au temps d’acquisition de la séquence IRM clinique utilisée. Dans un premier temps, les performances du suivi ont pu être améliorées grâce à l’estimation et la prédiction du mouvement suivi par un filtre de Kalman. Puis un capteur optique complémentaire a été ajouté pour réaliser un suivi multi-capteurs, découplant ainsi la fréquence de rafraichissement du suivi de la fréquence de rafraichissement des images IRM. La performance du système développé a été évaluée par des simulations et des expériences utilisant un banc d’essai compatible IRM. Les résultats montrent une bonne robustesse du suivi multi-capteurs pour l’alignement des plans de coupe grâce à la combinaison des qualités individuelles de chaque capteur. / Interventional magnetic resonance imaging (MRI) aims at performing minimally invasive percutaneous interventions, such as tumor ablations and biopsies, under MRI guidance. During such interventions, the acquired MR image planes are typically aligned to the surgical instrument (needle) axis and to surrounding anatomical structures of interest in order to efficiently monitor the advancement in real-time of the instrument inside the patient’s body. Object tracking inside the MRI is expected to facilitate and accelerate MR-guided interventions by allowing to automatically align the image planes to the surgical instrument. In this PhD thesis, an image-based workflow is proposed and refined for automatic image plane alignment. An automatic tracking workflow was developed, performing detection and tracking of a passive marker directly in clinical real-time images. This tracking workflow is designed for fully automated image plane alignment, with minimization of tracking-dedicated time. Its main drawback is its inherent dependence on the slow clinical MRI update rate. First, the addition of motion estimation and prediction with a Kalman filter was investigated and improved the workflow tracking performance. Second, a complementary optical sensor was used for multi-sensor tracking in order to decouple the tracking update rate from the MR image acquisition rate. Performance of the workflow was evaluated with both computer simulations and experiments using an MR compatible testbed. Results show a high robustness of the multi-sensor tracking approach for dynamic image plane alignment, due to the combination of the individual strengths of each sensor.
182

Étude de l’écoulement sanguin dans un anévrysme intracrânien avant et après traitement par stent flow diverter : quantification par traitement d’images de séquences angiographiques 2D / Blood flow study in an intracranial aneurysm before and after flow diverter treatment : quantification based on 2D digital angiography imaging processing

Bresson, Damien 14 November 2016 (has links)
Les anévrysmes intracrâniens (AIC) sont des malformations artérielles développées au dépend des vaisseaux qui vascularisent le parenchyme cérébral. Leur rupture provoque une hémorragie intracrânienne, appelée hémorragie sous-arachnoïdienne, responsable d'une mortalité importante ou de séquelles fonctionnelles lourdes. Le traitement préventif de ces lésions est fréquemment réalisé lors d'une procédure endovasculaire (appelée coiling), par implantation, au sein de la poche artérielle pathologique, de spires métallique en platine à détachement contrôlé (les coils). La présence de ce matériel provoque une thrombose de la poche ce qui entraine secondairement une exclusion de l'anévrysme de la circulation artérielle. Une modalité de traitement endovasculaire plus récente fait appel à un dispositif implantable innovant appelé stent "flow diverter" (FD) que l'on déploie en regard de l'orifice qui fait communiquer l'artère et l’anévrysme : le collet anévrysmal. Ces stents FD, au design particulier, associant une faible porosité à une densité de pores élevée, agissent comme des "déflecteurs" et diminuent le flux sanguin entrant et sortant de l'anévrysme. L'objectif du traitement demeure toujours l'exclusion de l'anévrysme mais celle-ci est obtenue indirectement en agissant sur la "porte d'entrée" de l'anévrysme (le collet) et non plus directement sur la poche anévrysmale elle-même. Il ne s'agit plus alors de remplir le sac anévrysmal avec des coils mais de provoquer une thrombose stable et pérenne en altérant uniquement le flux sanguin qui le pénètre. Cette modalité thérapeutique novatrice a suscité un engouement important de la part des neuroradiologues interventionnels depuis 2007, date des premières implantations en Europe. Cependant, bien que reposant sur les capacités d'un tel dispositif à modifier le flux, on constate qu'il existe très peu d'outils d'imagerie disponibles actuellement et capables de quantifier ces modifications en un délai raisonnable pour pouvoir être exploité lors du traitement endovasculaire. De cette constatation clinique est né un projet collaboratif dont la finalité était le développement d'un outil logiciel basé sur les séquences d'angiographie numérisées soustraites et capable de mesurer au moins un des aspects du flux sanguin (et donc de ses modifications). La démarche de recherche mise en œuvre s'est effectuée en trois étapes. Premièrement, une étape expérimentale portant sur la réalisation d'un modèle "optimisé" d'AIC permettant le recueil de données hémodynamiques et d'imagerie. Puis, une étape de recherche plus fondamentale comprenant deux parties: d'une part des simulations numériques réalisées dans le cadre d'un modèle 3D réaliste d'AIC et d'autre part l'analyse d'images angiographiques. Au cours de cette étape, nous avons utilisé des outils de traitement d'images existants et développé certains algorithmes, puis les avons validés avant de les implémenter sous JAVA pour créer un outil logiciel d'analyse de flux. Enfin, la dernière étape du projet a consisté en l'exploitation du logiciel pour étudier une série clinique de patients traités d'un AIC par stent FD. Elle a permis de mettre en évidence certains facteurs prédictifs d'exclusion de l'anévrysme à long terme susceptible d'avoir un impact, en temps réel, sur le traitement des AIC par stent FD. / Intracranial aneurysms treatment based on intra aneurismal flow modification tend to replace traditionally coiling in many cases and not only complex aneurysms for which they were initially designed. Dedicated stents (low porosity, high pores density stents) called “flow diverter” stents are deployed across the neck of the aneurysm to achieve this purpose. The summation of three different mechanisms tend to lead to the healing of the aneurysm: immediate flow alteration due to the mechanical screen effect of the stent, physiological triggering of acute or progressive thrombus formation inside the aneurysm’s pouch and long term biological response leading in neointima formation and arterial wall remodeling. This underlying sequence of processes is also supposed to decrease the recanalization rate. Scientific data supporting the flow alteration theory are numerous and especially computational flow dynamics (CFD). These approaches are very helpful for improving biomechanical knowledge of the relations between blood flow and pathology, but they do not fit in real-time treatments. Neuroendovascular treatments are performed under dynamic x-ray modality (digital subtracted angiography a DSA-).However, in daily practice, FD stents are sized to the patient’s 3D vasculature anatomy and then deployed. The flow modification is then evaluated by the clinician in an intuitive manner: the decision to deploy or not another stent is based solely on a visual estimation. The lack of tools available in the angioroom for quantifying in real time the blood flow hemodynamics should be pointed out. It would make sense to take advantage of functional data contained in contrast bolus propagation and not only anatomical data. Thus, we proposed to create flow software based on angiographic analysis. This software was built using algorithms developed and validated on 2D-DSA sequences obtained in a swine intracranial aneurysm model. This intracranial animal model was also optimized to obtain 3D vascular imaging and experimental hemodynamic data that could be used to realize realistic computational flow dynamic. In a third step, the software tool was used to analyze flow modification from angiographic sequences acquired during unruptured IA from patients treated with a FD stent. Finally, correlation between flow change and aneurysm occlusion at long term follow-up with the objective of identifying predictive markers of long term occlusion was performed.
183

New Algorithms for Local and Global Fiber Tractography in Diffusion-Weighted Magnetic Resonance Imaging

Schomburg, Helen 29 September 2017 (has links)
No description available.
184

Improving Brain Tumor Segmentation using synthetic images from GANs

Nijhawan, Aashana January 2021 (has links)
Artificial intelligence (AI) has been seeing a great amount of hype around it for a few years but more so now in the field of diagnostic medical imaging. AI-based diagnoses have shown improvements in detecting the smallest abnormalities present in tumors and lesions. This can tremendously help public healthcare. There is a large amount of data present in the field of biomedical imaging with the hospitals but only a small amount is available for the use of research due to data and privacy protection. The task of manually segmenting tumors in this magnetic resonance imaging (MRI) can be quite expensive and time taking. This segmentation and classification would need high precision which is usually performed by medical experts that follow clinical medical standards. Due to this small amount of data when used with machine learning models, the trained models tend to overfit. With advancing deep learning techniques it is possible to generate images using Generative Adversarial Networks (GANs). GANs has garnered a heap of attention towards itself for its power to produce realistic-looking images, videos, and audios. This thesis aims to use the synthetic images generated by progressive growing GANs (PGGAN) along with real images to perform segmentation on brain tumor MRI. The idea is to investigate whether the addition of this synthetic data improves the segmentation significantly or not. To analyze the quality of the images produced by the PGGAN, Multi-scale Similarity Index Measure (MS-SSIM) and Sliced Wasserstein Distance (SWD) are recorded. To exam-ine the segmentation performance, Dice Similarity Coefficient (DSC) and accuracy scores are observed. To inspect if the improved performance by synthetic images is significant or not, a parametric paired t-test and non-parametric permutation test are used. It could be seen that the addition of synthetic images with real images is significant for most cases in comparison to using only real images. However, this addition of synthetic images makes the model uncertain. The models’ robustness is tested using training-free uncertainty estimation of neural networks.
185

TransRUnet: 2D Detection and Segmentation of Lymphoma Lesions in Full-Body PET-CT Images / TransRUnet: 2D-detektion och segmentering av lymfomlesioner i helkroppsundersökning med PET-CT

Stahnke, Lasse January 2023 (has links)
Identification and localization of FDG-avid lymphoma lesions in PET-CT image volumes is of high importance for the diagnosis and monitoring of treatment progress in lymphoma patients. This process is tedious, time-consuming, and error-prone, due to large image volumes and the heterogeneity of lesions. Thus, a fully automatic method for lymphoma detection is desirable. The AutoPET challenge dataset contains 145 full-body FDG-PET-CT images of lymphoma patients with pixel-level segmentation of lesions. The Retina U-Net utilizes semantic segmentation maps for object detection through simultaneous segmentation and detection. More recently, transformer-based methods became increasingly popular due to their good performance. Here, TransRUnet is proposed, a 2D deep neural network capable of segmentation and object detection, combining the Retina U-Net with a Feature Pyramid Transformer. Firstly, a Retina U-Net was trained as a Baseline on 2D axial slices of 116 patient volumes from the AutoPET dataset, achieving an mAP of 0.377 and a DSC of 0.737 on the 29 test patients. Secondly, the TransRUnet was trained on the same patients, achieving an mAP and DSC of 0.285 and 0.732, respectively. Performance comparison based on mAP and DSC did not show significant differences (p = 0.596 and p = 0.940, for mAP and DSC, respectively) between the Retina U-Net and the TransRUnet. Furthermore, a substantial difference in FROC between the two models could not be observed. The ground truth data should be preprocessed to reduce noise in the training data or a 3D generalization of the TransRUnet should be used to improve the detection performance. / Att i PET-CT-bildvolymer identifiera och lokalisera lymfomlesioner med hög FDG-aviditet är av stor betydelse för diagnos och övervakning av behandlingseffekt hos lymfompatienter. Denna process är omständlig, tidskrävande och felbenägen på grund av stora bildvolymer och heterogeniteten hos lesionerna. Därför är det önskvärt med en helautomatisk metod för lymfomdetektion. AutoPET Challenge-datasetet innehåller 145 FDG-PET-CT-bilder av lymfom-patienter med segmentering av lesioner på pixelnivå. Retina U-Net använder semantiska segmenteringskartor för objektsdetektering genom samtidig segmentering och detektering. På senare tid har transformatorbaserade metoder blivit alltmer populära på grund av sina goda prestanda. Här föreslås TransRUnet, ett djupgående neuralt 2D-nätverk som kan segmentera och upptäcka objekt och som kombinerar Retina U-Net med en Feature Pyramid Transformer. I första steget tränades ett Retina U-Net som baslinje på 2D axialskivor av 116 patientvolymer från AutoPET-dataset, och uppnådde en mAP på 0,377 och en DSC på 0,737 på de 29 testpatienterna. I nästa steg tränades TransRUnet på samma patienter och uppnådde en mAP och DSC på 0,285 respektive 0,732. Jämförelse av prestanda baserat på mAP och DSC visade inga signifikanta skillnader (p = 0,596 och p = 0,940 för mAP respektive DSC) mellan Retina U-Net och TransRUnet. Dessutom kunde ingen väsentlig skillnad i FROC mellan de två modellerna observeras. Ground truth-data bör förbehandlas för att minska bruset i träningsdata eller också bör en 3D-generalisering av TransRUnet användas för att förbättra detektionsprestanda.
186

Semi-Automatic Analysis and Visualization of Cardiac 4D Flow CT

van Oosten, Anthony January 2022 (has links)
The data obtained from computational fluid dynamics (CFD) simulations of blood flow in the heart is plentiful, and processing this data takes time and the procedure for that is not straightforward. This project aims to develop a tool that can semi-automatically process CFD simulation data, which is based on 4D flow computed tomography (CT) data, with minimal user input. The tool should be able to time efficiently calculate flow parameters from the data, and automatically create overview images of the flow field while doing so, to aid the user's analysis process. The tool is coded using Python programming language, and the Python scripts are inputted to the application ParaView for processing of the simulation data.  The tool generates 3 chamber views of the heart by calculating three points from the given patient data, which represent the aortic and mitral valves, and the apex of the heart. A plane is generated that pass through these three points, and the heart is sliced along this plane to visualize 3 chambers of the heart. The camera position is also manipulated to optimize the 3 chamber view. The maximum outflow velocity over the cardiac cycle in the left atrial appendage (LAA) is determined by searching in a time range around the maximum outflow rate of the LAA in a cardiac cycle, and finding the highest velocity value that points away from the LAA in this range. The flow component analysis is calculated in the LAA and left ventricle (LV) by seeding particles in each at the start of the cardiac cycle, and tracking these particles forwards and backwards in time to determine where the particles end up and come from, respectively. By knowing these two aspects, the four different flow components of the blood can be determined in both the LAA and LV.  The tool can successfully create 3 chamber views of the heart model from three semi-automatically determined points, at a manipulated camera location. It can also calculate the maximum outflow velocity of the flow field over a cardiac cycle in the LAA, and perform a flow component analysis of the LAA and the LV by tracking particles forwards and backwards in time through a cardiac cycle. The maximum velocity calculation is relatively time efficient and produces results similar to those found manually, yet the output is dependent on the user-defined inputs and processing techniques, and varies between users. The flow component analysis is also time efficient, produces results for the LV that are comparable to pre-existing research, and produces results for the LAA that are comparable to the LVs' results. Although, the extraction process of the LAA sometimes includes part of the left atrium, which impacts the accuracy of the results. After processing each part, the tool creates a single file containing each part's main results for easier analysis of the patient data. In conclusion, the tool is capable of semi-automatically processing CFD simulation data which saves the user time, and it has thus met all the project aims
187

Deep learning strategies for histological image retrieval

Tabatabaei, Zahra 02 September 2024 (has links)
Tesis por compendio / [ES] Según World Health Organization (WHO), el cáncer es una de las principales causas de muerte a nivel mundial, con cerca de 10 millones de fallecimientos en 2020. Esto significa que aproximadamente una de cada seis muertes es causada por el cáncer. Para prevenir y disminuir esta enorme cantidad de muertes, es necesario un diagnóstico preciso del cáncer. Las técnicas basadas en Deep Learning (DL) han ofrecido algunas técnicas en el Diagnóstico Asistido por Computadora (CAD) para ayudar a los médicos con su diagnóstico. Estas técnicas no solo disminuyen la carga de trabajo de los patólogos, sino que también aumentan la precisión de sus diagnósticos con menos costos. Las colecciones de imágenes de alta resolución, como las láminas histopatológicas y las exploraciones médicas, han mejorado el rendimiento de estas técnicas. En esta tesis, nos enfocamos principalmente en imágenes histopatológicas escaneadas por escáneres de Whole Slide Images (WSI). Estas imágenes se introducen en métodos basados en DL, que emplean Redes Neuronales Convolucionales (CNN) para detectar las anomalías y los patrones en el tejido escaneado. Estas técnicas son capaces de analizar el tejido para disminuir los impactos de los errores humanos en el diagnóstico del cáncer. Content-Based Medical Image Retrieval (CBMIR) es uno de estos métodos que recientemente ha captado la atención de los investigadores en patología digital. En esta tesis, proponemos tres marcos CBMIR sobre imágenes histopatológicas con dos técnicas basadas en DL que se presentan en diferentes escenarios. En cuanto a los obstáculos potenciales que un CBMIR en patología digital podría enfrentar, incluida la limitación de recursos de GPU, la falta de suficientes conjuntos de datos, y las estrictas regulaciones de privacidad de datos para el intercambio de datos. En relación con estas complejidades, nos enfocamos en el aprendizaje federado en la segunda clase de nuestra investigación. En esta sección, combinamos los conceptos de Federated Learning (FL) con un marco CBMIR para imitar un CBMIR Federado Mundial (FedCBMIR) en imágenes histológicas de cáncer de mama. En esta investigación, seguimos tres escenarios para imitar los tres casos de uso de FedCBMIR en el flujo de trabajo médico. En la última contribución de esta tesis, el enfoque principal es una estrategia basada en aprendizaje contrastivo. Proponemos un marco CBMIR que puede superar las técnicas anteriores con el top K (K>1) y también tener un alto rendimiento en la recuperación de imágenes en el top primero. Además, otra contribución de esta tesis es resolver los desafíos que los patólogos tienen al clasificar los Tumores Spitzoides de Potencial Maligno Incierto (STUMP). Los STUMP presentan un dilema diagnóstico debido a su intrincada histología, creando desafíos para establecer parámetros claros entre nevos benignos y melanomas potencialmente malignos. Para ayudar a los patólogos a enfrentar esta complejidad, el marco puede proporcionar parches similares al top K para ellos con sus etiquetas correspondientes. En resumen, los marcos CBMIR y CBHIR propuestos en esta tesis contribuyen al diagnóstico del cáncer de próstata, mama y piel a partir de imágenes histopatológicas mediante el uso de FEs basados en DL en diferentes escenarios. Estos no solo mejoran la precisión y la eficiencia del diagnóstico del cáncer, sino que también prometen facilitar la detección temprana y las estrategias de tratamiento personalizado. Aprovechar estos marcos en el diagnóstico actual del cáncer podría conducir en última instancia a mejores resultados para los pacientes, menores costos de atención médica y una mayor calidad de vida para las personas afectadas por el cáncer de próstata, mama y piel. Estos avances tienen el potencial de impulsar un cambio social positivo y contribuir a la lucha global contra el cáncer. / [CA] Segons l'Organització Mundial de la Salut (OMS), el càncer és una de les principals causes de mort a nivell mundial, amb prop de 10 milions de defuncions en 2020. Això significa que aproximadament una de cada sis morts és causada pel càncer. Per prevenir i disminuir aquesta enorme quantitat de morts, és necessari un diagnòstic precís del càncer. Les tècniques basades en Deep Learning (DL) han ofert algunes tècniques en el Diagnòstic Assistit per Ordinador (CAD) per ajudar els metges amb el seu diagnòstic. Aquestes tècniques no només disminueixen la càrrega de treball dels patòlegs, sinó que també augmenten la precisió dels seus diagnòstics amb menys costos. Les col·leccions d'imatges d'alta resolució, com les làmines histopatològiques i les exploracions mèdiques, han millorat el rendiment d'aquestes tècniques. En aquesta tesi, ens enfoquem principalment en imatges histopatològiques escanejades per escàners de Whole Slide Images (WSI). Aquestes imatges s'introdueixen en mètodes basats en DL, que empren Xarxes Neuronals Convolucionals (CNN) per detectar les anomalies i els patrons en el teixit escanejat. Aquestes tècniques són capaces d'analitzar el teixit per disminuir els impactes dels errors humans en el diagnòstic del càncer. El Content-Based Medical Image Retrieval (CBMIR) és un d'aquests mètodes que recentment ha captat l'atenció dels investigadors en patologia digital. En aquesta tesi, proposem tres marcs CBMIR sobre imatges histopatològiques amb dues tècniques basades en DL que es presenten en diferents escenaris. Pel que fa als obstacles potencials que un CBMIR en patologia digital podria afrontar, inclou la limitació de recursos de GPU, la manca de suficients conjunts de dades, i les estrictes regulacions de privadesa de dades per a l'intercanvi de dades. En relació amb aquestes complexitats, ens enfoquem en l'aprenentatge federat en la segona classe de la nostra investigació. En aquesta secció, combinem els conceptes de Federated Learning (FL) amb un marc CBMIR per imitar un CBMIR Federat Mundial (FedCBMIR) en imatges histològiques de càncer de mama. En aquesta investigació, seguim tres escenaris per imitar els tres casos d'ús de FedCBMIR en el flux de treball mèdic. En l'última contribució d'aquesta tesi, l'enfocament principal és una estratègia basada en aprenentatge contrastiu. Proposem un marc CBMIR que pot superar les tècniques anteriors amb el top K (K>1) i també tenir un alt rendiment en la recuperació d'imatges en el top primer. A més, una altra contribució d'aquesta tesi és resoldre els desafiaments que els patòlegs tenen a l'hora de classificar els Tumors Spitzoides de Potencial Maligne Incert (STUMP). Els STUMP presenten un dilema diagnòstic a causa de la seva intricada histologia, creant desafiaments per establir paràmetres clars entre nevus benignes i melanomes potencialment malignes. Per ajudar els patòlegs a enfrontar aquesta complexitat, el marc pot proporcionar parches similars al top K per a ells amb les seves etiquetes corresponents. En resum, els marcs CBMIR i CBHIR proposats en aquesta tesi contribueixen al diagnòstic del càncer de pròstata, mama i pell a partir d'imatges histopatològiques mitjançant l'ús de FEs basats en DL en diferents escenaris. Aquests no només milloren la precisió i l'eficiència del diagnòstic del càncer, sinó que també prometen facilitar la detecció primerenca i les estratègies de tractament personalitzat. Aprofitar aquests marcs en el diagnòstic actual del càncer podria conduir en última instància a millors resultats per als pacients, menors costos d'atenció mèdica i una major qualitat de vida per a les persones afectades pel càncer de pròstata, mama i pell. Aquests avenços tenen el potencial d'impulsar un canvi social positiu i contribuir a la lluita global contra el càncer. / [EN] According to the World Health Organization (WHO), cancer is one of the leading causes of death worldwide, with nearly 10 million deaths in 2020. This means that approximately one in six deaths is caused by cancer. To prevent and decrease this enormous number of deaths, an accurate cancer diagnosis is necessary. Deep Learning (DL)-based techniques have offered some methods in Computer-Aided Diagnosis (CAD) to assist doctors with their diagnoses. These techniques not only reduce the workload of pathologists but also increase the accuracy of their diagnoses at lower costs. Collections of high-resolution images, such as histopathological slides and medical scans, have improved the performance of these techniques. In this thesis, we focus mainly on histopathological images scanned by Whole Slide Image (WSI) scanners. These images are introduced into DL-based methods, which employ Convolutional Neural Networks (CNN) to detect anomalies and patterns in the scanned tissue. These techniques can analyze the tissue to reduce the impacts of human errors in cancer diagnosis. Content-Based Medical Image Retrieval (CBMIR) is one of these methods that has recently attracted the attention of researchers in digital pathology. In this thesis, we propose three CBMIR frameworks on histopathological images with two DL-based techniques presented in different scenarios. Regarding potential obstacles that a CBMIR in digital pathology might face, including the limitation of GPU resources, the lack of sufficient datasets, and strict data privacy regulations for data sharing. Considering these complexities, we focus on federated learning in the second part of our research. In this section, we combine the concepts of Federated Learning (FL) with a CBMIR framework to simulate a World-Wide Federated CBMIR (FedCBMIR) on histological images of breast cancer. In this research, we follow three scenarios to mimic the three use cases of FedCBMIR in the medical workflow. In the final contribution of this thesis, the main focus is a contrastive learning-based strategy. We propose a CBMIR framework that can surpass previous techniques with the top K (K>1) and also have high performance in retrieving images at the top first. Additionally, another contribution of this thesis is to solve the challenges that pathologists face in grading Spitzoid Tumors of Uncertain Malignant Potential (STUMP). STUMPs present a diagnostic dilemma due to their intricate histology, creating challenges for establishing clear parameters between benign nevi and potentially malignant melanomas. To assist pathologists in coping with this complexity, the framework can provide top K similar patches for them with their corresponding labels. In summary, the CBMIR and CBHIR frameworks proposed in this thesis contribute to the diagnosis of prostate, breast, and skin cancer from histopathological images using DL-based FEs in different scenarios. These not only improve the accuracy and efficiency of cancer diagnosis but also promise to facilitate early detection and personalized treatment strategies. Leveraging these frameworks in current cancer diagnosis could ultimately lead to better patient outcomes, lower healthcare costs, and a higher quality of life for individuals affected by prostate, breast, and skin cancer. These advances have the potential to drive positive social change and contribute to the global fight against cancer. / This study is funded by European Union’s Horizon 2020 research and innovation program under the Marie Skłodowska-Curie grant agreement No. 860627 (CLAR- IFY Project). The work of Adrián Colomer has been supported by the ValgrAI – Valencian Graduate School and Research Network for Artificial Intelligence & Gen- eralitat Valenciana and Universitat Politècnica de València (PAID-PD-22). / Tabatabaei, Z. (2024). Deep learning strategies for histological image retrieval [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/207119 / Compendio
188

Breast medical images classification through the application of deep learning processing technologies

Jiménez Gaona, Yuliana del Cisne 02 September 2024 (has links)
Tesis por compendio / [ES] El cáncer de mama es una de las principales causas de muerte en mujeres de todo el mundo. Supone el 18.2% de las muertes por cáncer en la mujer y la primera causa de muerte en mujeres entre 40 y 55 años según la Sociedad Española de Senología y Patología Mamaria (SESPM). Una forma eficiente de disminuir este porcentaje es diagnosticarlo de forma temprana mediante exámenes de rayos x (Mamografía, Tomografía por emisión de positrones, Imagen de resonancia magnética, Tomografía computarizada), Ultrasonido, Tomosíntesis, Histopatología y Termografía. En la actualidad dentro del campo de la radiómica estos datos clínicos están siendo procesados con el uso de algoritmos de inteligencia artificial, especialmente para el preprocesamiento, segmentación y clasificación de lesiones malignas o benignas presentes en las imágenes médicas. Además, el desarrollo de estos sistemas computacionales asistidos para diagnóstico y detección temprana de anomalías presentes en la mama, ayudan al médico con una segunda opinión al diagnóstico manual tradicional. En consecuencia, el objetivo de este estudio es construir modelos de aprendizaje profundo y automático para la detección, segmentación y clasificación de lesiones mamarias en imágenes de mamografía y ultrasonido. Los hallazgos de este estudio brindan diversas herramientas de aumento de datos, super resolución, segmentación y clasificación automática de imágenes de mama para mejorar la precisión en los algoritmos de clasificación de lesiones mamarias. / [CA] El càncer de mama és una de les principals causes de mort en dones de tot el món. La mortalitat relacionada amb esta mena de càncer és més alta en comparación amb altres tipus de càncer. Una forma eficient de disminuir este percentatge és diagnosticar-lo de manera primerenca mitjançant exàmens de raigs x (Mamografia, Tomografía per emissió de positrons, Imatge de ressonància magnètica, Tomografia computada), Ultrasò, Tomosíntesi, Histopatologia i Termografia. En la actualidad dins del camp de la radiómica estes dades clíniques estan sent processados amb l'ús d'algorismes d'intel·ligència artificial, especialment per al preprocesamiento, segmentació i classificació de lesions malignes o benignes presents en les imatges mèdiques. A més, el desenvolupament d'estos sistemes computacionals asistidos per a diagnòstic i detecció precoç d'anomalies presents en la mama, ajuden al metge amb una segona opinió al diagnòstic manual tradicional. En conseqüència, l'objectiu d'este estudi és construir models d'aprenentatge profundo i automàtic per a la detecció, segmentació i classificació de lesions mamàries en imatges de mamografia i ultrasò. Les troballes d'este estudi brinden vaig donar-verses ferramentes d'augment de dades, super resolució, segmentació i classificación automàtica d'imatges de mama per a millorar la precisió en els algorismes de classificació de lesions mamàries. / [EN] Breast cancer is one of the most common causes of death in women worldwide. It accounts for 18.2% of cancer deaths in women and is the leading cause of death in women between 40 and 55 years of age, according to the Spanish Society of Senology and Breast Pathology (SESPM). An effective way to reduce this rate is through early diagnosis using radiological imaging (mammography, positron emission tomography, magnetic resonance imaging, computed tomography), Ultrasound, Tomosynthesis, Histopathology and Thermography. Currently, the field of radiomics is processing these clinical data using artificial intelligence algorithms, for pre-processing, segmentation, and classification of malignant or benign lesions present in medical images. In addition, the development of these computer-aided systems for diagnosis and early detection of breast abnormalities helps the radiologists with a second opinion to the traditional manual diagnosis. Therefore, the aim of this study is to build deep and machine learning models for the detection, segmentation, and classification of breast lesions in mammography and ultrasound images. The results of this study provide several tools for data augmentation, super-resolution, segmentation, and automatic classification of breast images to improve the accuracy of breast lesion classification algorithms. / This research project was co-funded by the Spanish Government Grant PID2019-107790RB-C22, which aimed to develop software for a continuous PET crystal system to be applied in breast cancer treatment. / Jiménez Gaona, YDC. (2024). Breast medical images classification through the application of deep learning processing technologies [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/208435 / Compendio
189

Phase Unwrapping MRI Flow Measurements / Fasutvikning av MRT-flödesmätningar

Liljeblad, Mio January 2023 (has links)
Magnetic resonance images (MRI) are acquired by sampling the current of induced electromotiveforce (EMF). EMF is induced due to flux of the net magnetic field from coherent nuclear spins with intrinsic magnetic dipole moments. The spins are excited by (non-ionizing) radio frequency electromagnetic radiation in conjunction with stationary and gradient magnetic fields. These images reveal detailed internal morphological structures as well as enable functional assessment of the body that can help diagnose a wide range of medical conditions. The aim of this project was to unwrap phase contrast cine magnetic resonance images, targeting the great vessels. The maximum encoded velocity (venc) is limited to the angular phase range [-π, π] radians. This may result in aliasing if the venc is set too low by the MRI personnel. Aliased images yield inaccurate cardiac stroke volume measurements and therefore require acquisition retakes. The retakes might be avoided if the images could be unwrapped in post-processing instead. Using computer vision, the angular phase of flow measurements as well as the angular phase of retrospectively wrapped image sets were unwrapped. The performances of three algorithms were assessed, Laplacian algorithm, sequential tree-reweighted message passing and iterative graph cuts. The associated energy formulation was also evaluated. Iterative graph cuts was shown to be the most robust with respect to the number of wraps and the energies correlated with the errors. This thesis shows that there is potential to reduce the number of acquisition retakes, although the MRI personnel still need to verify that the unwrapping performances are satisfactory. Given the promising results of iterative graph cuts, next it would be valuable to investigate the performance of a globally optimal surface estimation algorithm.

Page generated in 0.1499 seconds