Spelling suggestions: "subject:"meilleure approximation"" "subject:"meilleures approximation""
1 |
Orthogonalité des B-splines de Chebyshev cardinales dans un espace de Sobolev pondéréMelkemi, Khaled 14 December 1999 (has links) (PDF)
Ce travail porte sur l'étude théorique et numérique des splines de Chebyshev. Ces fonctions généralisent les splines polynomiales tout en préservant l'essentiel de leurs propriétés. Elles offrent de plus un intérêt particulier pour le design géométrique grâce aux paramètres de forme qu'elles fournissent. Dans un premier temps, nous étudions les splines basées sur un espace de Chebyshev invariant par translations, et les propriétés de la B-spline correspondante. Dans un deuxième temps, nous montrons, sous certaines hypothèses, que la base des B-splines de Chebyshev est orthonormale dans un espace de Sobolev pondéré par une suite unique de nombres positifs. La meilleure approximation dans l'espace de splines de Chebyshev au sens de la norme associé au produit scalaire précédent est alors un projecteur local. Enfin, pour l'implémentation numérique des résultats précédents, nous utilisons une méthode de quadratures adaptées. Quelques exemples illustrant les effets de forme obtenus sont présentés. Ces résultats généralisent un résultat prouvé récemment par Ulrich Reif dans le cas particulier des splines polynomiales.
|
2 |
Méthodes d'éclatement basées sur les distances de Bregman pour les inclusions monotones composites et l'optimisation / Splitting methods based on Bregman distances for composite monotone inclusions and optimizationNguyen, Van Quang 17 July 2015 (has links)
Le but de cette thèse est d'élaborer des méthodes d'éclatement basées sur les distances de Bregman pour la résolution d'inclusions monotones composites dans les espaces de Banach réels réflexifs. Ces résultats nous permettent d'étendre de nombreuses techniques, jusqu'alors limitées aux espaces hilbertiens. De plus, même dans le cadre restreint d'espaces euclidiens, ils donnent lieu à de nouvelles méthodes de décomposition qui peuvent s'avérer plus avantageuses numériquement que les méthodes classiques basées sur la distance euclidienne. Des applications numériques en traitement de l'image sont proposées. / The goal of this thesis is to design splitting methods based on Bregman distances for solving composite monotone inclusions in reflexive real Banach spaces. These results allow us to extend many techniques that were so far limited to Hilbert spaces. Furthermore, even when restricted to Euclidean spaces, they provide new splitting methods that may be more avantageous numerically than the classical methods based on the Euclidean distance. Numerical applications in image processing are proposed.
|
3 |
Inclusions Monotones en Dualité et ApplicationsVu, Bang Cong 15 April 2013 (has links) (PDF)
Le but de cette thèse est de développer de nouvelles techniques d'éclatement d'opérateurs multivoques pour résoudre des problèmes d'inclusion monotone structurés dans des espaces hilbertiens. La dualité au sens des inclusions monotones tient une place essentielle dans ce travail et nous permet d'obtenir des décompositions qui ne seraient pas disponibles via une approche purement primale. Nous développons plusieurs algorithmes à métrique fixe ou variable dans un cadre unifié, et montrons en particulier que de nombreuses méthodes existantes sont des cas particuliers de la méthode explicite--implicite formulée dans des espaces produits adéquats. Les méthodes proposées sont appliquées aux problèmes d'inéquations variationnelles, aux problèmes de minimisation, aux problèmes inverses, aux problèmes de traitement du signal, aux problèmes d'admissibilité et aux problèmes de meilleure approximation. Dans un second temps, nous introduisons une notion de suite quasi-fejérienne à métrique variable et analysons ses propriétés asymptotiques. Ces résultats nous permettent d'obtenir des extensions de méthodes d'éclatement aux problèmes où la métrique varie à chaque itération.
|
Page generated in 0.1217 seconds