• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 36
  • 21
  • 8
  • 7
  • 5
  • 2
  • 1
  • Tagged with
  • 92
  • 30
  • 16
  • 15
  • 14
  • 12
  • 12
  • 12
  • 12
  • 12
  • 10
  • 10
  • 9
  • 9
  • 8
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Étude du rôle de la neddylation dans la régulation de la recombinaison méiotique / Study of the role of neddylation in the regulation of meiotic recombination

Tagliaro Jahns, Marina 14 February 2014 (has links)
La recombinaison homologue est essentielle à la réparation des lésions de l’ADN ainsi qu’à la ségrégation correcte des chromosomes en méiose. Une étape importante de la recombinaison méiotique est la formation des crossovers (CO). Au cours de ma thèse, j’ai mis en évidence un nouveau mécanisme de régulation de la recombinaison méiotique. J'ai montré que les cycles d'activation et de désactivation des cullin-RING ligases (CRL) sont absolument nécessaires à la recombinaison méiotique. Les CRL sont activées par neddylation et désactivées par la deneddylation. De plus, elles peuvent aussi être inhibées par la séquestration via la protéine CAND1. Mon travail a démontré que ces trois niveaux de régulation des CRL jouent des rôles cruciaux dans la recombinaison homologue méiotique chez A. thaliana. J’ai montré qu'AXR1, un composant clé de la machinerie de neddylation, est nécessaire à la localisation correcte des CO méiotiques et à la recombinaison homologue somatique. J’ai aussi prouvé que le processus de deneddylation médié par CSN5A est nécessaire à la formation des CO. J'ai obtenu des données montrant que cette régulation de la localisation des CO agit à travers la régulation d’un complexe CRL4. Enfin, j’ai pu montrer que l'inhibiteur des CRL, CAND1, est requis pour la formation de plus de 90 % des CO. En utilisant des outils génétiques et cytologiques, j'ai montré que CAND1 agit probablement sur la régulation du biais inter-homologue. L’ensemble de ces données, met l’accent sur un nouveau mécanisme de la régulation de la recombinaison homologue, connectant pour la première fois la méiose et l’ubiquitination via les cullin-RING Ligases. / Homologous recombination is essential to all living organisms in order to repair DNA damages. In addition, a large majority of organisms use homologous recombination in meiosis to ensure proper chromosome segregation. A main step of meiotic recombination is crossover (CO) formation. During my PhD, I was able to highlight a new pathway controlling meiotic recombination. I showed that cycles of activation and deactivation of cullin-RING ligases (CRLs) are absolutely required for correct meiosis. CRLs are activated by neddylation, and deactivated by deneddylation. In addition, they can also be inhibited by sequestration by the CAND1 protein. My work demonstrated that these three levels of CRL regulation play crucial roles in meiotic homologous recombination in A. thaliana. First, I showed that AXR1, a key component of the neddylation machinery, is required for the correct localisation of meiotic COs and for somatic homologous recombination. Second, I showed that the deneddylation process mediated by CSN5A is also necessary for normal CO formation. I obtained evidence that this regulation of CO position is likely to be mediated by a CRL4 complex. Last, I could show that the CRL inhibitor, CAND1, is required for the formation of up to 90% of the COs. Using genetic and cytological tools, I showed that CAND1 probably acts on the regulation of the inter-homolog bias. Considering all these data, my work draws the attention to a new mechanism regulating meiotic homologous recombination, connecting for the first time meiosis to CRL-mediated ubiquitylation.
32

Comportamento meiótico em cana-de-açúcar (Saccharum spp.) e identificação das associações cromossômicas em meiose I por marcação dos centrômeros usando FISH / Meiotic behavior in sugarcane (Saccharum spp.) and identification of chromosomal associations in meiosis I by labeling centromeres using FISH

Almeida, Carmelice Boff de 26 August 2016 (has links)
A história de domesticação da cana-de-açúcar (Saccharum spp.) é atípica. As variedades modernas derivam de um processo que inclui hibridações entre a espécie domesticada S. officinarum e a silvestre S. spontaneum, sucessivos retrocruzamentos, no sentido de recuperar o genoma de S. officinarum e a seleção de progênies superiores. Além disso, as genealogias contemplam cruzamentos entre genótipos e eventualmente espécies, todos com elevado grau de ploidia e número de cromossomos distintos, assim como aneuploidias. Frente ao exposto, este trabalho teve como objetivos estabelecer o número de cromossomos e avaliar o comportamento meiótico da cultivar IACSP93-3046, bem como, identificar as associações cromossômicas em meiose I dos genótipos IACSP93-3046, IACSP95-3018 e de um representante de S. officinarum, Caiana Fita, pela marcação dos centrômeros usando FISH. O número de cromossomos da cultivar IACSP93-3046 foi determinado a partir de preparações do meristema radicular, pré-tratado com 8-hidroxiquinolina (0,03%, 4h), e corado pelo método de Feulgen. As células metafásicas foram analisadas sob microscopia óptica, preferencialmente intactas e com o mínimo de sobreposição de cromossomos. Para a análise do comportamento meiótico utilizou-se a técnica de esmagamento, e as células foram coradas com carmim propiônico. Foram observadas as fases meióticas desde a metáfase I até a telófase II, bem como as tétrades. O pareamento cromossômico em meiose I foi analisado usando a técnica de hibridização in situ fluorescente (FISH). Para tanto, preparações dos genótipos IACSP93-3046, IACSP95-3018 e Caiana Fita foram realizadas pelo gotejamento de uma suspensão de células em diacinese. As sondas foram obtidas por PCR a partir da amplificação da região centromérica de cana-de-açúcar, marcadas com digoxigenina-11-dUTP, por nick translation, e detectadas com anti-digoxigenina-rodamina. As lâminas foram montadas em DAPI-Vectashield e analisadas sob microscopia de fluorescência. O número diplóide 2n = 112 foi observado para a cultivar IACSP93-3046, sendo caracterizado pela primeira vez neste estudo. A microsporogênese de IACSP93-3046 apresentou elevado percentual de irregularidades (68%). De modo geral, as anormalidades foram relativas à segregação dos cromossomos, e incluíram migração precoce para os polos em metáfase I e II, cromossomos retardatários em anáfase (I e II) e em telófase (I e II), cromossomos perdidos em prófase II, e micronúcleos nas tétrades. A análise dos sítios de hibridização permitiu comprovar que os cromossomos se associam predominantemente como bivalentes em IACSP93-3046, IACSP95-3018 e Caiana Fita. As irregularidades na segregação dos cromossomos conduzem a micrósporos aneuploides, como constatado em IACSP93-3046. Sugere-se que a assincronia do processo meiótico entre os genomas que compõem a cana-de-açúcar tem papel relevante na geração dessas irregularidades. / The history of the sugarcane domestication (Saccharum spp.) is atypical. Modern varieties are derived from a hybridization process between the domestic species S. officinarum and the wild species S. spontaneum, successive backcrossings to recover the genome of S. officinarum, and the selection of superior progenies. The genealogies include crossings among genotypes, and possibly Saccharum species, all with a high degree of ploidy and different numbers of chromosomes, as well as aneuploidies. The study aimed to establish the number of chromosomes and evaluate the meiotic behavior of cultivar IACSP93-3046, and identify chromosomal associations in meiosis I of genotypes IACSP93-3046, IACSP95-3018 and Caiana Fita (a representative of S. officinarum) by labeling centromeres using fluorescence in situ hybridization (FISH). The number of chromosomes in cultivar IACSP93-3046 was determined from the root meristem preparations, pretreated with 8-hydroxiquinoline and stained by the Feulgen method. Metaphasic cells, preferably intact and with minimum chromosome overlap, were analyzed under an optical microscope. Meiotic behavior was examined from the preparations by using squashing method and stained with propionic carmine. Meiotic phases were observed from metaphase I to telophase II, and tetrad stages. Chromosomal pairing in meiosis I was analyzed by using the FISH technique. The slides of genotypes IACSP93-3046, IACSP95-3018 and Caiana Fita were produced by dropping a suspension of meiocytes in diakinesis. The probes were obtained by PCR, with amplification of the centromere region, and labeled with digoxigenin-11-dUTP, by nick translation, and detected with anti-digoxigenin-rhodamine. The slides were mounted in DAPI-Vectashield and analyzed under a fluorescence microscope. The diploid number 2n = 112 was observed for cultivar IACSP93-3046 and characterized in this study for the first time. Microsporogenesis of IACSP93-3046 presented a high irregularity percentage regarding chromosome segregation, especially precocious migration to poles in metaphase I and II, laggard chromosomes in anaphase and telophase I and II, lost chromosomes in prophase II, and micronuclei in the tetrad stages. The analysis from the hybridization sites proved that the chromosomal pairing occurred predominantly as bivalents in IACSP93-3046, IACSP95-3018 and Caiana Fita. Chromosomal segregation irregularities led to aneuploid microspores, as confirmed in IACSP93-3046, suggesting the asynchrony in the meiotic process between the sugarcane genomes play an important role in producing these irregularities.
33

Transcriptional and developmental consequences of aneuploidy during male meiosis

Ernst, Christina January 2018 (has links)
Eukaryotes have developed stringent regulatory mechanisms that control cell division and ensure proper chromosome segregation. Maintaining genome integrity is especially important during meiosis, the specialised cell division programme in the germline that generates haploid gametes. As these cells transmit genetic information to the next generation, the consequences of meiotic errors are not restricted to an organismal level, but can directly impact the fitness of the offspring. Mammals display a high degree of sexual dimorphism in meiosis with regard to the stringency of regulatory mechanisms. This manifests in a relatively high degree of maternally-derived aneuploidies due to weaker checkpoint control in females, whereas more rigorous checkpoints in males frequently perturb fertility. Mouse models of aneuploidy often exhibit complete male sterility and early germ cell arrest, preventing the study of aneuploidy during late and post-meiotic stages in males. In this thesis, we have used the trans-chromosomic mouse model, Tc1, which carries a single copy of human chromosome 21 (HsChr21) and show that, unlike other aneuploid mouse strains, the Tc1 mouse can successfully passage the exogenous human chromosome through male meiosis and generate aneuploid offspring. Our investigations have shown that the presence of the aneuploid human chromosome causes spermatogenic defects due to an arrest at the first meiotic division. Despite this impairment, we found an unexpectedly high number of aneuploid gametes in Tc1 males and the majority of males were able to produce aneuploid offspring, albeit at a lower frequency. Transmission of HsChr21 through the male germline was less efficient compared to female germline transmission, but allowed us to study the impact of male germline-associated chromatin remodelling on the transcriptional deployment of HsChr21 in the offspring. This revealed that, despite fundamentally different developmental dynamics, male- versus female-germline passage result in indistinguishable transcriptional and regulatory phenotypes. An important pathway in the male germline involves the expression of piRNAs, a class of small non-coding RNAs that are commonly found in the germline of animals where they defend cells against transposable elements. Profiling the expression of small RNAs in the Tc1 mouse showed that conserved human piRNA clusters can be successfully transcribed by the mouse piRNA machinery. In addition, we detected Tc1-specific piRNA sequences that were neither present in human nor mouse, mapping to a human-specific repeat element. In line with the previously observed activation of human-specific repeat elements in the Tc1 mouse, this suggests that novel transcripts arising from human repeats can trigger an adaptive piRNA response, thereby demonstrating the plasticity of this pathway to newly invading repeat elements. Transcriptional profiling of spermatogenic cell populations on a single-cell level allowed us to generate an atlas of gene expression over the course of spermatogenesis and dissect meiotic silencing dynamics in the presence of aneuploidy. Transcriptional silencing during meiosis occurs in response to unpaired chromosomes and, in male germ cells, affects the sex chromosomes due to their largely unpaired nature. We found that the presence of HsChr21 has no impact on the silencing of chromosome X, however, the two chromosomes display drastically different silencing patterns with HsChr21 showing a much weaker repression. Taken together, this study revealed a higher than expected tolerance for aneuploidy in the mouse male germline thus allowing the characterisation of meiotic checkpoint mechanisms, the meiotic silencing response to unpaired chromosomes as well as piRNA expression in the presence of an exogenous human chromosome.
34

Évolution de la recombinaison Méiotique : variation et fonction du gène Prdm9 chez la souris / Meiotic recombination evolution : Prdm9 gene variation and evolution in mice

Dunoyer de Segonzac, Denis 25 November 2016 (has links)
Évolution de la recombinaison méiotique: variation et fonction du gène Prdm9 chez la souris. L’espèce M. musculus est divisée en trois sous-espèces dont deux en Europe, M. m. musculus et M. m. domesticus. Lorsque certaines lignées de souris venant de ces différentes sous-espèces (PWD de M. m. musculus et C57BL/6 de M. m. domesticus) sont croisées, on observe une stérilité chez les descendants mâles, due à un arrêt en prophase de la première division de méiose. Cette stérilité est liée à des incompatibilités génétiques qui impliquent une combinaison spécifique d’allèles du gène Prdm9, une hétérozygotie génomique ainsi qu’une région du chromosome X. Le gène Prdm9, qui est l’un des gènes évoluant le plus rapidement chez les rongeurs et les primates, a ainsi été proposé être un gène impliqué dans la spéciation. Au niveau moléculaire, Prdm9 spécifie la localisation des événements de recombinaison méiotique en des sites qui peuvent différer selon les allèles. Lors de ma thèse, j’ai entrepris de tester l’hypothèse du rôle de Prdm9 dans la spéciation en évaluant la généralité des incompatibilités dues à Prdm9. J’ai testé la fertilité de 32 croisements réalisés à partir de 8 lignées de souris issues de la nature, 4 de chaque sous espèce et portant des allèles de Prdm9 distincts. L’analyse du poids testiculaire et de la spermatogénèse par histologie et immuno-cytochimie a révélé un phénotype sauvage chez tous ces hybrides. Par contre, en croisant la lignée C57BL/6 avec les 4 lignées de M. m. musculus utilisées précédemment, j’ai observé une corrélation entre la présence d’un allèle spécifique de M. m. musculus (PWD) et la stérilité, avec des variations des phénotypes indiquant que les facteurs impliqués n’ont pas été fixés.J’ai donc démontré que la stérilité hybride est restreinte à des combinaisons spécifiques d’allèles Prdm9 et de fonds génétiques, ce qui définit de manière précise le contexte dans lequel Prdm9 pourrait jouer un rôle dans la spéciation. Compte tenu du phénomène d’érosion des sites de PRDM9 par conversion génique et que leur hétérozygotie peut conduire à des défauts de recombinaison et à la stérilité, mes données conduisent également à des prédictions sur la fréquence et l’activité de différents allèles de Prdm9 sur les génomes de M. m. musculus et M. m. domesticus.En parallèle, j’ai également initié une étude portant sur 300 souris sauvages d’origines géographiques et phylogénétiques variées : par capture et séquençage de régions génomiques d’intérêt, nous chercherons à déchiffrer les modes de sélection régissant l’évolution de la région génomique du gène Prdm9. Lors de ma thèse, j’ai entrepris de tester l’hypothèse du rôle de Prdm9 dans la spéciation en évaluant la généralité des incompatibilités dues à Prdm9. J’ai testé la fertilité de 32 croisements réalisés à partir de 8 lignées de souris issues de la nature, 4 de chaque sous espèce et portant des allèles de Prdm9 distincts. L’analyse du poids testiculaire et de la spermatogénèse par histologie et immuno-cytochimie a révélé un phénotype sauvage chez tous ces hybrides. Par contre, en croisant la lignée C57BL/6 avec les 4 lignées de M. m. musculus utilisées précédemment, j’ai observé une corrélation entre la présence d’un allèle spécifique de M. m. musculus (PWD) et la stérilité, avec des variations des phénotypes indiquant que les facteurs impliqués n’ont pas été fixés.J’ai donc démontré que la stérilité hybride est restreinte à des combinaisons spécifiques d’allèles Prdm9 et de fonds génétiques, ce qui définit de manière précise le contexte dans lequel Prdm9 pourrait jouer un rôle dans la spéciation. Compte tenu du phénomène d’érosion des sites de PRDM9 par conversion génique et que leur hétérozygotie peut conduire à des défauts de recombinaison et à la stérilité, mes données conduisent également à des prédictions sur la fréquence et l’activité de différents allèles de Prdm9 sur les génomes de M. m. musculus et M. m. domesticus. / Meiotic recombination evolution: Prdm9 gene variation and evolution in miceHouse mouse Mus musculus is divided into three sub species, two of which are found in Europe, M. m. musculus and M. m. domesticus. Male hybrids from some mouse strains derived from these sub-species (PWD from M. m. musculus and C57BL/6 from M. m. domesticus) are sterile with a meiotic arrest during the first meiotic prophase. This sterility is due to genetic incompatibilities involving heterozygosity at Prdm9 and in the genome as well as a locus on the X chromosome. Prdm9, which one of the fastest evolving gene in primates and rodents, was thus proposed to be a speciation gene. At the molecular level, Prdm9 is known to specify the sites of meiotic recombination which can be distinct in different Prdm9 alleles.During my thesis, I tested the hypothesis of the role of Prdm9 in speciation by evaluating the generality of incompatibilities due to Prdm9. I tested the fertility of 32 hybrids made by crossing 8 wild-derived mouse strains from both sub-species and carrying distinct Prdm9 alleles. Based on the analysis of testis weight and of spermatogenesis by histological and cytological analysis, I observed a wild type phenotype in all hybrids. Instead when C57BL/6 was crossed with the four M. m. musculus strains used in previous crosses, I observed a correlation between the presence of the PWD allele and sterility, with variations in the strength of the phenotype.I have thus shown that hybrid sterility is limited to specific combinations of Prdm9 alleles together with specific genomic backgrounds which define contexts in which Prdm9 could act as a speciation gene. Given that PRDM9 sites are eroded by gene conversion and that heterozygosity at PRDM9 sites can lead to defects in meiotic recombination and to sterility, my observations lead to predictions about Prdm9 allele frequencies and Prdm9 historical activities on the genomes of M. m. musculus and M. m. domesticus.Simultaneously, I initiated a study on nearly 300 mice of various geographic and phylogenetic origins: using genomic sequence capture technology, we are aiming to decipher selection forces affecting the evolution of Prdm9 gene genomic region.
35

Ação da Proteína Kinase C na maturação de oócitos bovinos / Role of Protein Kinase C on bovine oocyte maturation

Everton Lopes 28 June 2012 (has links)
A qualidade do oócito é um fator limitante na fertilidade das fêmeas e reflete seu intrínseco potencial ao desenvolvimento embrionário subsequente. As alterações moleculares e bioquímicas no processo de maturação dos oócitos são necessárias para permitir a fecundação destes. Sob influência das gonadotrofinas, uma cascata de eventos é desencadeada, alterando a expressão gênica e a estrutura dos folículos. A maturação ocorre pelo intercâmbio entre o oócito e as células do cumulus que irão fornecer fatores para o desenvolvimento do oócito e criar o microambiente necessário para garantir o sucesso na maturação. A ação do FSH sobre a retomada da meiose ocorre, possivelmente, por ativação da proteína quinase C (PKC). A via de sinalização desta proteína parece estar envolvida na ativação da quinase ativada por mitógeno (MAPK) em oócitos e células do cumulus, na maturação induzida por FSH e LH, além de regular a síntese do Fator de Crescimento Epidermal (EGF). Deste modo, o objetivo do presente trabalho foi avaliar a ação da PKC na maturação de oócitos bovinos e se esta ativação envolve o EGF. Para tal foram realizados dois experimentos. Em ambos, a progressão do ciclo celular foi avaliada utilizando a sonda fluorescente Hoechst 33342. A expansão das células do cumulus foi avaliada utilizando-se o software Image Pro Plus 5.1 para análise das imagens dos oócitos geradas em microscópio Olympus IX81. O maior diâmetro de cada complexo cumulus oócito foi adotado como parâmetro de mensuração da expansão. A dosagem de progesterona do meio de cultivo foi realizada pela técnica de RIA. A ativação da PKC e da MAPK foi avaliada pela técnica de Western blot. Os dados foram avaliados pelo software SigmaPlot versão 12.2 e submetidos ao teste de normalidade (Shapiro-Wilk). Quando necessário, os dados foram transformados. Para comparação entre dois tratamentos, utilizou-se o teste t-student. Para mais de dois tratamentos foi realizada análise de variância e teste de comparação de médias (TUKEY), considerando-se 0,05 para rejeitar a hipótese de nulidade. No experimento 1 foi avaliado se a ativação da PKC foi estimulada por gonadotrofinas. Os oócitos foram maturados in vitro tratados com gonadotrofinas, na presença ou ausência do inibidor de PKC. A presença do inibidor de PKC diminuiu as taxas de quebra de vesícula germinativa e a expansão das células do cumulus, sem alterar a esteroidogênese. Estes resultados demonstram que a PKC participa da via de sinalização da retomada da meiose. No experimento 2 foi avaliado se o EGF está envolvido na via regulada pela PKC. Os oócitos foram maturados in vitro, na presença ou ausência de LH e FSH, do inibidor de PKC e do EGF. O EGF foi capaz de reverter os efeitos do inibidor de PKC, aumentando as taxas de quebra de vesícula germinativa e a expansão de células do cumulus. Não foi possível detectar, nas condições deste experimento, a ativação das proteínas PKC e MAPK através do Western Blot. Este trabalho permite concluir que a via de sinalização da maturação de oócitos bovinos envolve a PKC e sugere a participação do EGF nesta via. / Oocyte quality is a limiting factor in female fertility and reflects its potential to the subsequent embryonic development. Molecular and biochemical alterations during the oocyte maturation process are needed to allow fecundation. Under gonadotropin influence, cascade of events occurs changing gene expression and follicle structure. Maturation depends on the interaction between oocyte and cumulus cells interaction, which provides factors for oocyte development and create the ideal microenvironment for the success of the maturation process. The FSH stimulation of meiosis resumption probably occurs through PKC activation. The signaling pathway of PKC might be involved by the mitogen activated protein kinase (MAPK) in oocytes and cumulus cells during FSH-LH induced maturation. Furthermore, MAPK regulates the epidermal growth factor (EGF) synthesis. The aim of the present study was to evaluate PKC function during bovine oocyte maturation and if its activity involves EGF. Two experiments were performed. In both experiments, the cell cycle progression was analyzed by Hoechst 33342 fluorescent dye. The cumulus cells expansion was performed using software Image Pro Plus 5.1 by the analysis of oocyte images taken in Olympus IX81 microscope. The highest diameter of each cumulus oocyte complex was recorded as the expansion value. The RIA and Western Blot techniques were used to measure progesterone concentration in the culture media and the PKC and MAPK activity, respectively. Data was analyzed by SigmaPlot software, version 12.2. The Shapiro-Wilk test was used to assess for normality and, when needed, the data was transformed. Student t tests were carried out to compare two treatments. Differences between more than two means were assessed by analysis of variance followed by Tukey test, considering P-value lower than 0.05 as statistically significant. Experiment 1 studied whether PKC function was stimulated by gonadotropins. FSH and LH were used for oocyte maturation in vitro, with or without PKC inhibitor. The presence of PKC inhibitor decreased germinal vesicle breakdown and the cumulus cells expansion, but did not alter the steroidogenesis. These results show that PKC participates in the signaling pathway of meiosis resumption. The Experiment 2 evaluated whether EGF influences PKC signaling pathway. The oocytes were matured in vitro, in the presence or absence of LH and FSH, PKC inhibitor and EGF. Epidermal Growth Factor was able to reverse PKC inhibitor effects, increasing germinal vesicle breakdown rates and cumulus cells expansion. The Western Blot technique was not able to detect PKC and MAPK activity, considering the conditions of this study. In conclusion, PKC is involved in the signaling pathway of bovine oocytes maturation and its pathway is mediated by EGF.
36

Resection of DNA double strand breaks in the germline of Caenorhabditis elegans

Yin, Yizhi 01 August 2015 (has links)
Repair of double-strand DNA breaks (DSBs) by the homologous recombination (HR) pathway results in crossovers (COs) required for a successful first meiotic division. DSB resection is the nucleic degradation of DSB ends to expose 3’ single strand DNA (ssDNA), an intermediate required for HR. To investigate genes involved in meiosis, a forward genetic screen was performed to search for novel genes or informative new mutant alleles of known genes. Mre11 is one member of the MRX/N (Mre11-Rad50-Xrs2/Nbs1) complex required for meiotic DSB formation and for resection in budding yeast. In Caenorhabditis elegans, evidence for the MRX/N’s role in DSB resection is limited. We isolated the first separation of function allele in C. elegans , mre 11(iow1), isolated from our forward genetic screen. The mre-11(iow1) mutants are specifically defective in meiotic DSB resection but not in DSB formation. The mre 11(iow1) mutants display chromosomal fragmentation and aggregation in late prophase I. Recombination intermediates and crossover formation is greatly reduced in mre 11(iow1) mutants. Irradiation induced DSBs during meiosis fail to be repaired from the early to middle prophase I in mre 11(iow1) mutants. Our data suggest that some DSBs in mre 11(iow1) mutants are repaired by the non homologous end joining (NHEJ) pathway because removing NHEJ partially suppresses some meiotic defects conferred by mre 11(iow1). In the absence of NHEJ and a functional MRX/N, meiotic DSBs are channeled to an EXO 1 dependent form of recombination repair. Overall, our analysis supports a role for MRE-11 in the resection of DSBs in early to middle meiotic prophase I and in blocking NHEJ. A reverse genetic screen and a yeast two hybrid screen were performed to search for genes with genetic and/or physical interactions with mre-11. The reverse genetic screen isolated a novel meiotic gene, nhr-2, as a partial suppressor of the meiotic defects conferred by mre-11(iow1). The yeast two hybrid screen identified kin-18 interacting with mre-11. KIN-18 is the C. elegans homolog of mammalian Thousand And One kinase (TAO) kinase. KIN-18/TAO is MAPK kinase kinase whose meiotic role was unknown. We have found that KIN-18 is essential for normal meiotic progression as kin-18 mutants exhibit accelerated meiotic recombination, ectopic germ cell differentiation, and enhanced levels of germline apoptosis. In C.elegans MPK-1 activation in late pachytene is required for physiological apoptosis (nuclei removed by apoptosis serve as nursing cells for oocytes) and oocyte differentiation. The kin-18 mutants also showed absence of MPK-1 activation and aberrant MPK-1 activation that includes ectopic activation in the wrong regions in the germline or more than one time of activation. The progression defects in kin-18 mutants are suppressed by inhibiting an upstream activator, KSR-2, of the canonical MPK-1 signaling. Our data suggest KIN-18 affects meiotic progression by modulating the timing of MPK-1 activation. This regulation ensures the proper timing of recombination and normal apoptosis, which is required for the formation of functional oocytes. Meiosis is a conserved process; revealing that KIN-18 is a novel regulator of meiotic progression in C. elegans will motivate hypothesis for TAO kinase’s role in the germline development in higher eukaryotes. Meiosis is a crucial for sexually reproducing organisms to maintain ploidy level from one generation to the next. Accurate chromosome segregation in the meiosis requires meiotic recombination between homologous chromosomes. Failure in recombination can lead to abnormal segregation of chromosomes in meiosis, which leads to aneuploidy. Anueploidy is a leading cause of miscarriages and attributes to chromosomal related birth defects. Meiotic recombination starts with programmed DNA double strand breaks (DSBs), followed by repair of these DSBs by homologous recombination (HR) pathway. One key step in HR is resection, a process to covert DSB ends into single strand DNA (ssDNA). To broaden our understanding of meiotic DSB resection, we used a nematode, C. elegans, as a model to investigate genes in DSB resection. We have isolated a specific mutant allele of a meiotic gene, mre-11. Our data suggest meiotic DSB resection in C. elegans requires collaboration of mre-11 and another gene exo-1; efficient resection of DSB ends is important to safeguard repair of DSB by HR against other illegitimate repair pathway. In addition, we identified a gene kin-18 by looking for genes interacting with mre-11. Characterization of kin-18 show meiotic recombination is tightly coordinated with germ cell progression. Our analysis provides significant improvement in the understanding of meiotic recombination in C. elegans. Given the high conservation of the two genes, mre-11 and kin-18, our finding may be applied to other organisms.
37

Hybrid Sterility and Segregation Distortion in Drosophila pseudoobscura and Drosophila persimilis

McDermott, Shannon January 2012 (has links)
<p>Speciation has occurred countless times throughout history, and yet the genetic mechanisms that lead to speciation are still missing pieces. Here, we describe the genetics of two processes that can act alone or together to cause speciation: hybrid sterility and meiotic drive. We use the <italic>Drosophila pseudoobscura/D, persimilis</italic> species as a model system to study these processes. We expanded on a prior study and saw little variation in strength of previously known hybrid sterility alleles between distinct strains of <italic>D. persimilis</italic> and the Bogota subspecies of <italic>D. pseudoobscura</italic>. Introgression of an autosomal, noninverted hybrid sterility allele from the USA subspecies of <italic>D. pseudoobscura</italic> into <italic>D. persimilis</italic> demonstrated that the <italic>D. pseudoobscura</italic> copy of a <italic>D. persimilis</italic> hybrid sterility factor also causes hybrid male sterility in a <italic>D. pseudoobscura bogotana</italic> background. This allelism suggests that the introgressed allele is ancestral, but was lost in the Bogota lineage, or that gene flow between <italic>D. pseudoobscura</italic> USA and <italic>D. persimilis</italic> moved the sterility-conferring allele from <italic>D. persimilis</italic> into <italic>D. pseudoobscura</italic>. To further understand the genetic basis of speciation, we asked if meiotic drive in <italic>D. persimilis</italic> is associated with hybrid sterility seen in <italic>D. persimilis/D. pseudoobscura</italic> hybrids. QTL mapping of both traits along the right arm of the X chromosome, where both drive and hybrid sterility loci are found, suggest that some of the causal loci overlap and may be allelic.</p> / Dissertation
38

An Investigation of Links Between Simple Sequences and Meiotic Recombination Hotspots

Bagshaw, Andrew Tobias Matthew January 2008 (has links)
Previous evidence has shown that the simple sequences microsatellites and poly-purine/poly-pyrimidine tracts (PPTs) could be both a cause, and an effect, of meiotic recombination. The causal link between simple sequences and recombination has not been much explored, however, probably because other evidence has cast doubt on its generality, though this evidence has never been conclusive. Several questions have remained unanswered in the literature, and I have addressed aspects of three of them in my thesis. First, what is the scale and magnitude of the association between simple sequences and recombination? I found that microsatellites and PPTs are strongly associated with meiotic double-strand break (DSB) hotspots in yeast, and that PPTs are generally more common in human recombination hotspots, particularly in close proximity to hotspot central regions, in which recombination events are markedly more frequent. I also showed that these associations can't be explained by coincidental mutual associations between simple sequences, recombination and other factors previously shown to correlate with both. A second question not conclusively answered in the literature is whether simple sequences, or their high levels of polymorphism, are an effect of recombination. I used three methods to address this question. Firstly, I investigated the distributions of two-copy tandem repeats and short PPTs in relation to yeast DSB hotspots in order to look for evidence of an involvement of recombination in simple sequence formation. I found no significant associations. Secondly, I compared the fraction of simple sequences containing polymorphic sites between human recombination hotspots and coldspots. The third method I used was generalized linear model analysis, with which I investigated the correlation between simple sequence variation and recombination rate, and the influence on the correlation of additional factors with potential relevance including GC-content and gene density. Both the direct comparison and correlation methods showed a very weak and inconsistent effect of recombination on simple sequence polymorphism in the human genome.Whether simple sequences are an important cause of recombination events is a third question that has received relatively little previous attention, and I have explored one aspect of it. Simple sequences of the types I studied have previously been shown to form non-B-DNA structures, which can be recombinagenic in model systems. Using a previously described sodium bisulphite modification assay, I tested for the presence of these structures in sequences amplified from the central regions of hotspots and cloned into supercoiled plasmids. I found significantly higher sensitivity to sodium bisulphite in humans in than in chimpanzees in three out of six genomic regions in which there is a hotspot in humans but none in chimpanzees. In the DNA2 hotspot, this correlated with a clear difference in numbers of molecules showing long contiguous strings of converted cytosines, which are present in previously described intramolecular quadruplex and triplex structures. Two out of the five other hotspots tested show evidence for secondary structure comparable to a known intramolecular triplex, though with similar patterns in humans and chimpanzees. In conclusion, my results clearly motivate further investigation of a functional link between simple sequences and meiotic recombination, including the putative role of non-B-DNA structures.
39

FUNÇÃO DA OCITOCINA NA INDUÇÃO DA RETOMADA MEIÓTICA DE OÓCITOS EM BOVINOS

Trois, Roberta Lopes da Silva 31 October 2011 (has links)
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / The aim of the present study was to examine the role of oxytocin (OT) on the control of oocyte meiotic resumption in the events that involves progesterone (P4) and prostaglandins (PGs). Oocytes were co-cultured with follicular hemisections for 15 h to determine the effect of different doses of OT or atosiban (ATO; oxytocin receptor antagonist) on the oocyte meiotic resumption. In another experiment, we examine the effect of P4, OT and PGs interaction on the regulatory cascade of the induction of oocyte meiotic resumption. Oxytocin in the concentration of 1 μM was effective in inducing the resumption of meiosis of oocytes co-cultured with follicular cells (84.0%), not differing statistically from the positive control group (74.4%). Similarly, atosiban inhibited the positive effect of OT on meiotic resumption in a dose-dependent manner, in which the metaphase I (MI) rate was only 27.6% in the presence of 10 μM ATO, not differing from the negative control group (25.5%). The possible toxic effect of ATO was tested in a 15 or 24 h-cumulus-oocyte complex culture system. In the third experiment, we demonstrated that P4 was able to induce the oocyte meiotic resumption, which was inhibited by ATO. However, the positive effect of OT was not blocked by mifepristone (P4 antagonist) but was inhibited by indometacine (a non-selective PTGS2 inhibitor). Collectively, these results evidenced that P4 is upstream to OT and PGs are required for the positive effect of OT to induce oocyte meiotic resumption. In conclusion, our results evince that together with Ang II, already proved by our group as involved in oocyte meiotic resumption, P4, OT and PGs are sequential steps in the hormonal cascade that culminates with resumption of meiosis in cattle. / O objetivo do presente estudo foi examinar o papel da ocitocina (OT) no controle da retomada meiótica de oócitos bovinos, além da interação desse peptídeo com a progesterona (P4) e prostaglandinas (PGs) neste evento fisiológico. Nesse estudo, verificamos a interação da P4, OT e PGs na cascata de indução de retomada meiótica do oócito. Oócitos foram co-cultivados com metades foliculares por 15 h para determinar o efeito de diferentes doses de OT ou atosiban (ATO; antagonista do receptor de ocitocina) no reinício da maturação meiótica A OT na concentração de 1 μM foi eficaz em induzir a retomada da meiose de oócitos co-cultivados com células foliculares (84,0%), não diferindo estatisticamente do grupo controle positivo (74,4%). O ATO inibiu o efeito positivo da OT sobre o reinício da meiose de uma forma dose-dependente onde a porcentagem de oócitos que atingiu o estádio de metáfase I (MI), foi apenas 27,6% na presença de 10 μM de ATO, não diferindo do grupo controle negativo (25,5%). Para confirmar que este efeito não era resultante de toxicidade ocasionada pelo ATO, foi realizado um experimento onde o efeito tóxico do ATO foi testado em um cultivo durante 15 e 24 horas, e foi possível observar que ele não apresenta efeitos tóxicos aos oócitos em cultivo, permitindo a retomada da meiose. Foi demonstrado também que a P4 foi capaz de induzir a retomada da meiose do oócito bovino ao qual foi inibida pelo ATO. No entanto, o efeito positivo da OT não foi bloqueado pela mifepristona (antagonista P4), mas foi inibida por indometacina (inibidor não-seletivo de PTGS2). Coletivamente, estes resultados evidenciam que P4 requer OT e esta requer PGs para que oócitos bovinos reiniciem a meiose. Em conclusão, nossos resultados demonstram que, P4, OT e PGs são passos seqüenciais da cascata hormonal que culmina com a retomada da meiose em bovinos.
40

Genetic strategies to manipulate meiotic recombination in Arabidopsis thaliana

Diaz, Patrick Loyola January 2018 (has links)
During meiosis eukaryotes produce four haploid gametes from a single diploid parental cell. In meiotic S-phase homologous chromosomes, which were inherited from maternal and paternal parents, are replicated. Homologous chromosomes then pair and undergo reciprocal crossover, which generates new mosaics of maternal and paternal sequences. Meiosis also involves two rounds of chromosome segregation, meaning that only one copy of each chromosome is finally packaged into the resulting haploid gametes. In this work I sought to genetically engineer two elements of meiosis, in order to generate tools which may be useful for plant breeding. The first project sought to generate a second division restitution (SDR) population, where the second meiotic division is skipped. This is created by crossing an SDR mutant, omission of second division1, which produces diploid pollen due to a defective meiosis-II, to a haploid inducer line, whose chromosomes are lost from the zygote post-fertilisation. This was intended to give rise to diploid plants possessing chromosomes from just the SDR parent. Importantly, the SDR parent used was heterozygous, meaning that SDR progeny should show mostly homozygous chromosomes, but with regions of residual heterozygosity, determined by crossover locations. This project succeeded in creating a small number of plants with the predicted SDR genotype, although a range of aberrant genotypes were also observed. I present several hypotheses that could account for the observed progeny genotypes. In a second project I attempted to direct meiotic recombination using DNA double strand breaks targeted to specific sites. This project used a spo11-1 mutant, which is unable to produce the endogenous meiotic DNA DSBs that normally mature into crossovers. Instead, TALFokI nucleases (TALENs) were expressed from meiotic promoters in order to generate exogenous DSBs at sites determined by the DNA binding specificity of the TAL repeat domains. The project succeeded in transforming TALENs into spo11-1 mutants and confirming their expression. However, this was not sufficient to recover the spo11-1 mutant infertility or direct crossovers. Potential reasons for this non-complementation are discussed, as well as their implications for control of meiotic recombination in plant genomes.

Page generated in 0.0403 seconds