• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 17
  • 4
  • 2
  • 2
  • Tagged with
  • 30
  • 30
  • 15
  • 8
  • 6
  • 6
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Sobre a natureza dos ácidos coleicos / About the nature of choleic acids

Paschoal Ernesto Américo Senise 17 April 1942 (has links)
Não consta resumo na publicação. / Abstract not available.
22

Elektrolyty s rozpouštědly typu sulfolanu / Electrolytes based on sulfolan and similar solvents

Máca, Josef January 2011 (has links)
Submitted thesis deal with study of aprotic electrolytes in order to increase the safety for use in lithno – ionts accumulators. Increase of safety is specified by measuring the flash point of each electrolytes, at the same time are evaluated also other parameters important for use in accumulators. For determine the window of temperatures where the electrolytes can work is measured by melting point. The melting point is measured by cryoscopy. From electrical properties is measured specific conductivity of the electrolyte.
23

Computational Analysis of Aqueous Drug Solubility – Influence of the Solid State

Wassvik, Carola January 2006 (has links)
<p>Aqueous solubility is a key parameter influencing the bioavailability of drugs and drug candidates. In this thesis computational models for the prediction of aqueous drug solubility were explored. High quality experimental solubility data for drugs were generated using a standardised protocol and models were developed using multivariate data analysis tools and calculated molecular descriptors. In addition, structural features associated with either solid-state limited or solvation limited solubility of drugs were identified.</p><p>Solvation, as represented by the octanol-water partition coefficient (log<i>P</i>), was found to be the dominant factor limiting the solubility of drugs, with solid-state properties being the second most important limiting factor.</p><p>The relationship between the chemical structure of drugs and the strength of their crystal lattice was studied for a dataset displaying log<i>P</i>-independent solubility. Large, rigid and flat molecules with an extended ring-structure and a large number of conjugated π-bonds were found to be more likely to have their solubility limited by a strong crystal lattice than were small, spherically shaped molecules with flexible side-chains.</p><p>Finally, the relationship between chemical structure and drug solvation was studied using computer simulated values of the free energy of hydration. Drugs exhibiting poor hydration were found to be large and flexible, to have low polarisability and few hydrogen bond acceptors and donors.</p><p>The relationship between the structural features of drugs and their aqueous solubility discussed in this thesis provide new rules-of-thumb that could guide decision-making in early drug discovery.</p>
24

Computational Analysis of Aqueous Drug Solubility – Influence of the Solid State

Wassvik, Carola January 2006 (has links)
Aqueous solubility is a key parameter influencing the bioavailability of drugs and drug candidates. In this thesis computational models for the prediction of aqueous drug solubility were explored. High quality experimental solubility data for drugs were generated using a standardised protocol and models were developed using multivariate data analysis tools and calculated molecular descriptors. In addition, structural features associated with either solid-state limited or solvation limited solubility of drugs were identified. Solvation, as represented by the octanol-water partition coefficient (logP), was found to be the dominant factor limiting the solubility of drugs, with solid-state properties being the second most important limiting factor. The relationship between the chemical structure of drugs and the strength of their crystal lattice was studied for a dataset displaying logP-independent solubility. Large, rigid and flat molecules with an extended ring-structure and a large number of conjugated π-bonds were found to be more likely to have their solubility limited by a strong crystal lattice than were small, spherically shaped molecules with flexible side-chains. Finally, the relationship between chemical structure and drug solvation was studied using computer simulated values of the free energy of hydration. Drugs exhibiting poor hydration were found to be large and flexible, to have low polarisability and few hydrogen bond acceptors and donors. The relationship between the structural features of drugs and their aqueous solubility discussed in this thesis provide new rules-of-thumb that could guide decision-making in early drug discovery.
25

Fused Arenes-Based Molecular and Polymeric Materials for Organic Field Effect Transistors

Irugulapati, Harista 01 May 2013 (has links)
In the past decade, tremendous progress has been made in organic field effecttransistors. Fused oligothiophenes and anthracene molecules are fascinatingmacromolecules having unique optoelectronic properties. These compounds are successfully employed as active components in optoelectronic devices including field effect transistors. Our goal is to design and synthesize conjugated molecular materials, which are highly functionalized through structural modifications in order to enhance their electronic, photonic, and morphological properties. The main desire is to synthesize novel organic fused-arenes having efficient charge carrier mobilities, as well as to optimize optical properties for organic field effect transistors (OFETs). Novel series of fused arene molecules of 9,10-di(thiophen-3-yl)anthracene (1), trans-2,5-(dianthracene-9- vinyl)thiophene (2), trans-5,5’-(dianthracene-9-yl)vinyl)- 2,2’-bithiophene (3), 5,5’-di(2 thiophene)-2,2’-bithiophene (4) , 9,10-(divinyl)anthracene core with 1- phenylcarboxypyrene (6) and polymers of poly(anthracene-co-bithiophene) (5) and poly(anthracene) (7) have been synthesized as promising materials for organic field effect transistors (OFETs). These compounds were confirmed and characterized by 1H-NMR, FT-IR, and elemental analysis. Their optical, thermal, and electronic properties were investigated using UV-Vis and photoluminescence spectroscopy, and thermogravimetric analysis respectively. Future studies will focus on evaluating OFETs performance of these material.
26

Computational and Experimental Models for the Prediction of Intestinal Drug Solubility and Absorption

Bergström, Christel A. S. January 2003 (has links)
<p>New effective experimental techniques in medicinal chemistry and pharmacology have resulted in a vast increase in the number of pharmacologically interesting compounds. However, the number of new drugs undergoing clinical trial has not augmented at the same pace, which in part has been attributed to poor absorption of the compounds.</p><p>The main objective of this thesis was to investigate whether computer-based models devised from calculated molecular descriptors can be used to predict aqueous drug solubility, an important property influencing the absorption process. For this purpose, both experimental and computational studies were performed. A new small-scale shake flask method for experimental solubility determination of crystalline compounds was devised. This method was used to experimentally determine solubility values used for the computational model development and to investigate the pH-dependent solubility of drugs. In the computer-based studies, rapidly calculated molecular descriptors were used to predict aqueous solubility and the melting point, a solid state characteristic of importance for the solubility. To predict the absorption process, drug permeability across the intestinal epithelium was also modeled.</p><p>The results show that high quality solubility data of crystalline compounds can be obtained by the small-scale shake flask method in a microtiter plate format. The experimentally determined pH-dependent solubility profiles deviated largely from the profiles predicted by a traditionally used relationship, highlighting the risk of data extrapolation. The <i>in silico</i> solubility models identified the non-polar surface area and partitioned total surface areas as potential new molecular descriptors for solubility. General solubility models of high accuracy were obtained when combining the surface area descriptors with descriptors for electron distribution, connectivity, flexibility and polarity. The used descriptors proved to be related to the solvation of the molecule rather than to solid state properties. The surface area descriptors were also valid for permeability predictions, and the use of the solubility and permeability models in concert resulted in an excellent theoretical absorption classification. To summarize, the experimental and computational models devised in this thesis are improved absorption screening tools applicable to the lead optimization in the drug discovery process. </p>
27

Computational and Experimental Models for the Prediction of Intestinal Drug Solubility and Absorption

Bergström, Christel A. S. January 2003 (has links)
New effective experimental techniques in medicinal chemistry and pharmacology have resulted in a vast increase in the number of pharmacologically interesting compounds. However, the number of new drugs undergoing clinical trial has not augmented at the same pace, which in part has been attributed to poor absorption of the compounds. The main objective of this thesis was to investigate whether computer-based models devised from calculated molecular descriptors can be used to predict aqueous drug solubility, an important property influencing the absorption process. For this purpose, both experimental and computational studies were performed. A new small-scale shake flask method for experimental solubility determination of crystalline compounds was devised. This method was used to experimentally determine solubility values used for the computational model development and to investigate the pH-dependent solubility of drugs. In the computer-based studies, rapidly calculated molecular descriptors were used to predict aqueous solubility and the melting point, a solid state characteristic of importance for the solubility. To predict the absorption process, drug permeability across the intestinal epithelium was also modeled. The results show that high quality solubility data of crystalline compounds can be obtained by the small-scale shake flask method in a microtiter plate format. The experimentally determined pH-dependent solubility profiles deviated largely from the profiles predicted by a traditionally used relationship, highlighting the risk of data extrapolation. The in silico solubility models identified the non-polar surface area and partitioned total surface areas as potential new molecular descriptors for solubility. General solubility models of high accuracy were obtained when combining the surface area descriptors with descriptors for electron distribution, connectivity, flexibility and polarity. The used descriptors proved to be related to the solvation of the molecule rather than to solid state properties. The surface area descriptors were also valid for permeability predictions, and the use of the solubility and permeability models in concert resulted in an excellent theoretical absorption classification. To summarize, the experimental and computational models devised in this thesis are improved absorption screening tools applicable to the lead optimization in the drug discovery process.
28

Přímá syntéza vysokomolekulárních polymerů kyseliny mléčné / Direct Synthesis of High-Molecular Polymers of Lactic Acid

Mikulík, David January 2016 (has links)
This master thesis deals with the direct synthesis of polymers from lactic acid. The theoretical part focuses on both natural and synthetic ways of production the lactic acid monomer, their advantages and properties. Furthermore, the theoretical part focuses on the synthesis of poly(lactic acid) (PLA) from lactide, and direct polycondensation from lactic acid discussing about influences of catalysts, co-catalysts as well as chain extenders. The experimental part focuses on the synthesis of PLA polymers and co-polymers wherein investigates suitable catalysts, reaction medium for azeotropic dehydration and co-catalyst influence on products. Thermal and analytical analysis of PLA polymers are mentioned at the end of the experimental part.
29

Effect of polymer matrix on the rheology of hydroxapatite filled polyethylene composites.

Martyn, Michael T., Joseph, R., McGregor, W.J., Tanner, K.E., Coates, Philip D. January 2002 (has links)
No / The effect of matrix polymer and filler content on the rheological behavior of hydroxyapatite-filled injection molding grade high-density polyethylene (HDPE) has been studied. Studies of the flow curves revealed that the matrix and the composite exhibit three distinct regions in the flow curve, namely, a pseudoplastic region at low to moderate shear rates, a plateau and a second pseudoplastic region at high shear rates. The shear stress corresponding to the plateau (Tc) is dependent on both the filler concentration and the melt temperature. Addition of HA in the HDPE matrix increases the value of Tc and decreases compressibility of the melt. An increase in temperature also raises the value of Tc. From the nature of flow curves it is concluded that the matrix polymer largely decides the rheology of the composite.
30

Crystallization of Parabens : Thermodynamics, Nucleation and Processing

Huaiyu, Yang January 2013 (has links)
In this work, the solubility of butyl paraben in 7 pure solvents and in 5 different ethanol-water mixtures has been determined from 1 ˚C to 50 ˚C. The solubility of ethyl paraben and propyl paraben in various solvents has been determined at 10 ˚C. The molar solubility of butyl paraben in pure solvents and its thermodynamic properties, measured by Differential Scanning Calorimetry, have been used to estimate the activity of the pure solid phase, and solution activity coefficients. More than 5000 nucleation experiments of ethyl paraben, propyl paraben and butyl paraben in ethyl acetate, acetone, methanol, ethanol, propanol and 70%, 90% ethanol aqueous solution have been performed. The induction time of each paraben has been determined at three different supersaturation levels in various solvents. The wide variation in induction time reveals the stochastic nature of nucleation. The solid-liquid interfacial energy, free energy of nucleation, nuclei critical radius and pre-exponential factor of parabens in these solvents have been determined according to the classical nucleation theory, and different methods of evaluation are compared. The interfacial energy of parabens in these solvents tends to increase with decreasing mole fraction solubility but the correlation is not very strong. The influence of solvent on nucleation of each paraben and nucleation behavior of parabens in each solvent is discussed. There is a trend in the data that the higher the boiling point of the solvent and the higher the melting point of the solute, the more difficult is the nucleation. This observation is paralleled by the fact that a metastable polymorph has a lower interfacial energy than the stable form, and that a solid compound with a higher melting point appears to have a higher solid-melt and solid-aqueous solution interfacial energy. It has been found that when a paraben is added to aqueous solutions with a certain proportion of ethanol, the solution separates into two immiscible liquid phases in equilibrium. The top layer is water-rich and the bottom layer is paraben-rich. The area in the ternary phase diagram of the liquid-liquid-phase separation region increases with increasing temperature. The area of the liquid-liquid-phase separation region decreases from butyl paraben, propyl paraben to ethyl paraben at the constant temperature. Cooling crystallization of solutions of different proportions of butyl paraben, water and ethanol have been carried out and recorded using the Focused Beam Reflectance Method, Particle Vision and Measurement, and in-situ Infrared Spectroscopy. The FBRM and IR curves and the PVM photos track the appearance of liquid-liquid phase separation and crystallization. The results suggest that the liquid-liquid phase separation has a negative influence on the crystal size distribution. The work illustrates how Process Analytical Technology (PAT) can be used to increase the understanding of complex crystallizations. By cooling crystallization of butyl paraben under conditions of liquid-liquid-phase separation, crystals consisting of a porous layer in between two solid layers have been produced. The outer layers are transparent and compact while the middle layer is full of pores. The thickness of the porous layer can reach more than half of the whole crystal. These sandwich crystals contain only one polymorph as determined by Confocal Raman Microscopy and single crystal X-Ray Diffraction. However, the middle layer material melts at lower temperature than outer layer material. / <p>QC 20130515</p> / investigate nucleation and crystallization of drug-like organic molecules

Page generated in 0.0691 seconds