• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 7
  • 4
  • 1
  • Tagged with
  • 13
  • 13
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Couplage des procédés membranaires aux techniques physico-chimiques ou biologiques pour le traitement des rejets liquides de l'industrie de textile / Membrane process combined with physico-chemical or biological processes for textile wastewater treatment

Harrlekas, Farida 09 February 2008 (has links)
Le traitement des rejets textiles se fait habituellement via une filière physico-chimique couplée à un traitement biologique. La qualité de l’effluent obtenu obéit difficilement aux normes de recyclage ou de rejet dans le milieu naturel. Dans cet objectif, différentes combinaisons sont proposées: la coagulation floculation (CF) et/ou l’adsorption sur charbon actif (CAP) en poudre couplée aux techniques membranaires (microfiltration (MF) ou ultrafiltration (UF)), la photocatalyse couplée à un traitement aérobie biologique (système membranaire (BRM) ou réacteur discontinu séquentiel (RDS)) ou au traitement anaérobie par voie biologique ou chimique. Une comparaison générale a été réalisée pour optimiser le traitement adéquat. La combinaison CF-CAP-UF est un traitement efficace pour la réduction de la DCO, de la couleur et de la turbidité. La dégradation de deux colorants textiles (azoïque et phthalocyanine) a été étudiée par photocatalyse simple ou combinée à un BRM. Le traitement photocatalytique a été réalisé en présence de dioxyde de titane fixé sur un support en fibres de cellulose dans un réacteur à film tombant en présence d’irradiation UV. Pour les deux types de réacteurs biologiques, bien que la biomasse ait été influencée par la variation de la concentration en colorant et par le mode de fonctionnement continu pour le BRM, elle a pu résister. Après le pré-traitement nous avons obtenu une complète décoloration mais les sous produits photocatalytiques demeurent toxiques et peuvent empêcher l’abattement de la DCO. Dans une dernière partie, nous avons testé le couplage de la photocatalyse à un traitement chimique par hydrogénation catalytique ou biologique par boues granulaires. Cette dernière possibilité s’avère être efficace puisque des taux de décoloration supérieurs à 90% ont été atteints pour différents types de colorants et qu’aucune toxicité des produits obtenus lors du pré-traitement photocatalytique n’a été détectée / The treatment of textile wastewater is usually done by a set of physicochemical processes coupled with a biological treatment. The effluent quality abides with difficulty the norms for reuse or discharge in environment. Various treatment combinations have been tested such as coagulation-flocculation (CF) and adsorption on activated carbon (PAC) coupled with membrane technologies (microfiltration (MF) or ultrafiltration (UF)), photocatalysis coupled with a biological treatment (membrane bioreactor (MBR) or a sequential batch reactor (SBR) or a biological and chemical anaerobic treatment. A general comparison was made to optimise the appropriate treatment. The combination CF-PAC-UF is the most effective of non-biological systems in terms of COD, absorbance and turbidity removal. The degradation of an azoïc and a phthalocyanine textile dyes by simple photocatalysis or combined to a membrane bioreactor has been investigated. Photocatalysis was achieved in a falling film reactor containing titanium dioxide fixed on cellulose fibres under UV irradiation. For both biological systems, although biomass was influenced by the variation of dyes concentration and the continuous operating mode for the MBR, it could resist to the applied conditions. However, even after pre-treatment where full decolouration was achieved, photocatalytic by-products were toxic and could inhibit COD removal. Chemical and biological anaerobic treatment have been applied to textile dyes and combined with a photocatalytic process. Photocatalysis was able to remove more than 90% color from crude as well as autoxidized reduced dye solutions. The photocatalytic end-products were not toxic toward methanogenic bacteria
12

Optimization of protein concentration from alfalfa juice by high shear rate dynamic filtration / Optimisation de la concentration des protéines à partir du jus de luzerne par filtration dynamique à fort cisaillement

Zhang, Wenxiang 30 June 2016 (has links)
Les protéines extraites des feuilles de luzerne sont une source importante de protéines. La filtration membranaire, technologie de séparation respectueuse de l’environnement avec une productivité élevée et de faible coût a été utilisée pour séparer et concentrer les protéines des feuilles de luzerne à partir de leur jus. Cependant le phénomène du colmatage de la membrane qui réduit sérieusement le flux et la séparation des protéines est un facteur limitant important dans l'application de la filtration membranaire. Pour améliorer la récupération des protéines et amenuiser le phénomène du colmatage, la filtration membranaire associée à fort cisaillement a été utilisée pour la filtration du jus de luzerne. Toujours dans l’objectif d'optimiser le processus de la filtration, "le mode de la filtration" et "les paramètres de fonctionnement" ont été étudiés pour réduire le colmatage de la membrane et améliorer le rendement de la filtration. Puis, l’effluent du jus de luzerne a été filtré par des membranes dans des conditions de fort cisaillement afin de recycler les protéines. En outre, le mécanisme du colmatage a été étudié et a permis d’évaluer les stratégies de contrôle du colmatage. L'optimisation du procédé membranaire, via l’étude du "mode de filtration" et des "paramètres de fonctionnement" a été conduit dans le but d’améliorer la séparation et la concentration des protéines et de réduire le colmatage. Trois types de « mode de filtration » ont été testés : la filtration frontale sur le module de la cellule amicon (DA), la filtration tangentielle dynamique sur le module à disque rotatif (CRDM) et la filtration frontale sur le module à disque rotatif (DRDM)). Les « paramètres de fonctionnement » qui ont été étudiés sont les suivants : le type de membranes (ultrafiltration (UF) et microfiltration (MF)), la vitesse de rotation, la température et la pression transmembranaire (TMP). Le comportement du débit (évolution du flux du perméat au cours de la filtration), les performances de la séparation (taux de clarification et de concentration), l’efficacité du nettoyage de la membrane (récupération de la perméabilité membranaire) et la productivité lors des tests de recyclage et de concentration ont été étudiés dans le but de définir des stratégies dans le contrôle du colmatage. Puis, l’effluent de luzerne a été filtré par UF afin de séparer et purifier les protéines. Le mécanisme du phénomène du colmatage des membranes lors de la filtration du jus de luzerne a été étudié. Le processus du colmatage de la membrane a montré une tendance d’un colmatage multi-site progressif. Le modèle du colmatage multisite progressif selon la loi de Darcy (SMDM) a été proposé afin de mieux décrire et comprendre le processus du colmatage. Les effets de la composition du fluide d’alimentation, du choix de la membrane et des conditions hydraulique ont joué un rôle important dans le processus progressif du colmatage. De plus, les coefficients de résistance et de compressibilité dans les différentes étapes et sites ont été calculés afin d’expliquer le processus complexe du colmatage et d’évaluer l'efficacité des stratégies du contrôle du colmatage. Une série d'essais avec de longues durées de filtration a été réalisée pour étudier le déclin du flux et le colmatage de la membrane à diverses étapes du processus. Ces résultats présentent une utilité pour améliorer la récupération des protéines et contrôler le colmatage dans le processus de la filtration membranaire à fort cisaillement du jus de luzerne. Ces résultats sont aussi utiles pour la conception et la mise en place des technologies membranaires dans les processus industriels. / Alfalfa leaf proteins extracted from plants are an important protein source. As an environmentally friendly separation technology with high productivity and low cost, membrane filtration was used to separate and concentrate leaf protein from alfalfa juice. However membrane fouling seriously reduces flux and protein separation and is an important limitation in the application of membrane filtration. To improve protein recovery and fouling control, dynamic shear-enhanced membrane filtration with high shear rate on membrane surface and excellent anti-fouling capacity was used for alfalfa juice filtration in this work. In order to optimize filtration process, filtration mode and operation parameters were investigated to reduce membrane fouling and improve separation performance. Then, alfalfa wastewater was also treated by dynamic shear-enhanced membrane filtration to recycle proteins. Furthermore, the fouling mechanism was studied and served as a valuable evaluation for fouling strategies. In this study, process optimization including “Filtration mode” and “Operation parameters” was studied to improve protein recovery and fouling control. In “Filtration mode”, three types of filtration modules (dead end filtration using laboratory Amicon cell (DA), dynamic cross filtration using rotating disk module (CRDM) and dead end filtration using rotating disk module (DRDM)) were used to investigate the filtration performance. As for “Operation parameters”, the operation parameters including membranes (ultrafiltration (UF) and microfiltration (MF)), rotating speed, temperature and transmembrane pressure (TMP) were studied to optimize the filtration process. Flux behavior (permeate flux and flux decline), separation performance (clarification and concentration capacity), membrane cleaning efficiency (permeability recovery) and productivity in full recycling tests and concentration tests were utilized to evaluate the various operation strategies. In addition, alfalfa wastewater was treated by UF membrane, while waste proteins were recycled. Fouling mechanism for alfalfa juice filtration was investigated. The fouling process showed significantly stepwise multisite patterns. Based on Darcy’s law, the stepwise multisite Darcy’s law model (SMDM) was proposed to better describe and understand the fouling process. The effects of feed composition, membrane and hydraulic conditions played an important role in stepwise fouling process. Moreover, the resistance coefficient and compressibility for different steps and sites were calculated to explain the complex fouling process and estimate the efficiency of flux decline control strategies. Besides, a series of long tests were utilized to study flux decline and membrane fouling at various fouling step process. These results can be used to understand the protein recovery and fouling control during shear-enhanced membrane filtration process of alfalfa juice. They have important implications for process design of membrane technology in industrial scale.
13

Three step modelling approach for the simulation of industrial scale pervaporation modules

Schiffmann, Patrick 07 February 2014 (has links)
The separation of aqueous and organic mixtures with thermal separation processes is an important and challenging task in the chemical industry. Rising prices for energy, stricter environmental regulations and the increasing demand for high purity chemicals are the main driving forces to find alternative solutions to common separation technologies such as distillation and absorption. These are mostly too energy consumptive and can show limited separation performance, especially when applied to close boiling or azeotropic mixtures. Pervaporation can overcome these thermodynamic limitations and requires less energy because only the separated components need to be evaporated. This separation technology is already well established for the production of anhydrous solvents, but not yet widely distributed in the chemical and petrochemical industry due to some crucial challenges, which are still to overcome. Besides the need of high selective membranes, the development of membrane modules adapted to the specific requirements of organoselective pervaporation needs more research effort. Furthermore, only few modelling and simulation tools are available, which hinders the distribution of this process in industrial scale. In this work, these issues are addressed in a combined approach. In close collaboration with our cooperation partners, a novel membrane module for organophilic pervaporation is developed. A novel technology to manufacture high selective polymeric pervaporation membranes is applied to produce a membrane for an industrially relevant organic-organic separation task. A three step modelling approach ranging from a shortcut and a discrete to a rigorous model is developed and implemented in a user interface. A hydrophilic and an organophilic membrane are characterised for the separation of a 2-butanol/water mixture in a wide range of feed temperature and feed concentration in order to establish a generally valid description of the membrane performances. This approach is implemented in the three developed models to simulate the novel membrane module in industrial scale. The simulations are compared to the results of pilot scale experiments conducted with the novel membrane module. Good agreement between simulated and experimental values is reached.

Page generated in 0.1228 seconds