Spelling suggestions: "subject:"memoria cache."" "subject:"emoria cache.""
1 |
Uma Abordagem de escalonamento heterogêneo preemptivo e não preemptivo para sistemas de tempo real com garantia em multiprocessadoresStarke, Renan Augusto January 2012 (has links)
Dissertação (mestrado) - Universidade Federal de Santa Catarina, Centro Tecnológico. Programa de Pós-Graduação em Engenharia de Automação e Sistemas / Made available in DSpace on 2012-10-26T12:25:42Z (GMT). No. of bitstreams: 1
301047.pdf: 1285723 bytes, checksum: fcb30ba5e90539742c71505b32d65921 (MD5) / Sistemas de tempo real são sistemas onde o correto funcionamento não depende somente da resposta lógica correta, mas também do tempo no qual ela foi dada. Igualmente do ponto de vista lógico, a viabilidade temporal da aplicação deve ser determinada através de técnicas, como por exemplo análise do tempo de reposta. Este tipo de aplicação está cada vez mais presente atualmente e a demanda de processamento é tamanha que necessita-se de processadores com múltiplos núcleos complexos. É perceptível que o desenvolvimento dos multiprocessadores está muito mais avançado em relação às técnicas de análise de tais sistemas e, portanto, é evidente a necessidade de pesquisa com objetivo de promover maior confiabilidade e redução de superdimensionamentos. O objetivo deste trabalho é promover uma solução de escalonamento que considere a escalonabilidade em conjunto com a analisabilidade do código da aplicação. Atualmente, a pesquisa de sistemas de tempo real trata o problema do escalonamento isolado do problema de obtenção do parâmetro do tempo de computação da tarefas (WCET --Worst Case Execution Time). Dependendo da arquitetura do processador, as premissas adotadas no cálculo do WCET são incompatíveis com as premissas de escalonamento, o que gera uma contradição fundamental entre o cálculo do WCET e os algoritmos de escalonamento. A incompatibilidade das premissas pode ser ilustrada pela preempção em arquiteturas com memória cache, onde o cálculo de WCET assume execução contínua da tarefa, o que não é verdade em grande parte dos algoritmos de escalonamento. Este trabalho propõe o uso de uma abordagem heterogênea em multiprocessadores onde parte dos núcleos operam em regime preemptivo e parte em regime não preemptivo para tentar lidar com as diferentes considerações sobre preempção. As análises realizadas mostram que existe vantagem em usar a abordagem heterogênea. / Real-time systems are systems where the correct functioning depends not only on the logically correct response, but also the time when it was given. As the the logic functionality, the application response time could be analyzed to determine the viability of a real-time system. This type of application is increasingly present today and the processing demand is such that complex multi-core processors are needed. It is noticeable that the development of multiprocessor is a long way ahead compared with the techniques of analysis of such systems and is therefore necessary researches to promote more reliability and to reduce over-specified systems. The objective of this work is to promote a solution that considers scheduling in conjunction with the analyzability of the application code. Currently, the real-time research considers the scheduling problem isolated from the WCET (Worst Case Execution Time) problem. Depending on the processor architecture, the values obtained by computing WCET are incompatible with the scheduling model which creates a fundamental contradiction between the assumptions of calculation of WCET and scheduling algorithms. This work proposes the use of a heterogeneous approach where part of the multiprocessor cores operate under preemptive and part on a non-preemptive scheduling. The analysis shows that there are advantages using the heterogeneous approach.
|
2 |
Avaliação de desempenho da hierarquia de proxy em redes de alta velocidadeSantos, Gérson Valdir dos January 2003 (has links)
Dissertação (mestrado) - Universidade Federal de Santa Catarina, Centro Tecnológico. Programa de Pós-Graduação em Ciência da Computação. / Made available in DSpace on 2012-10-21T06:00:21Z (GMT). No. of bitstreams: 0 / O presente trabalho tem como objetivo a avaliação do desempenho de uma Hierarquia de Proxies, dedicada a Cache de Web, localizada em redes de alta velocidade. A análise foi realizada dando enfoque ao tempo de resposta para o usuário final propriamente dito. Verificou-se, utilizando máquinas clientes, que em uma rede de alta velocidade onde se localiza uma Hierarquia de Proxies, os tempos de respostas apresentaram variações favoráveis ao uso dos Proxies. Entretanto verificou-se que a implementação deste serviço, neste tipo de rede, não apresenta ganhos muitos significativos no que diz respeito aos tempos de resposta para o usuário final, ficando em torno de 1 segundo. Constatou-se também que o tempo gasto na resolução de nomes das URLs pode degradar a performance dos acessos às páginas Web, seja utilizando hierarquia de Proxies ou nos simples acessos cliente-servidor. O problema foi verificado nas URLs que possuem registros DNS com baixo tempo vida (TTL).
|
3 |
Real-time operating system support for multicore applicationsGracioli, Giovani January 2014 (has links)
Tese (doutorado) - Universidade Federal de Santa Catarina, Centro Tecnológico, Programa de Pós-Graduação em Engenharia de Automação e Sistemas, Florianópolis, 2014 / Made available in DSpace on 2015-02-05T21:15:28Z (GMT). No. of bitstreams: 1
328605.pdf: 3709437 bytes, checksum: 81e0fb95e092d5a351413aae5a972ac2 (MD5)
Previous issue date: 2014 / Plataformas multiprocessadas atuais possuem diversos níveis da memória cache entre o processador e a memória principal para esconder a latência da hierarquia de memória. O principal objetivo da hierarquia de memória é melhorar o tempo médio de execução, ao custo da previsibilidade. O uso não controlado da hierarquia da cache pelas tarefas de tempo real impacta a estimativa dos seus piores tempos de execução, especialmente quando as tarefas de tempo real acessam os níveis da cache compartilhados. Tal acesso causa uma disputa pelas linhas da cache compartilhadas e aumenta o tempo de execução das aplicações. Além disso, essa disputa na cache compartilhada pode causar a perda de prazos, o que é intolerável em sistemas de tempo real críticos. O particionamento da memória cache compartilhada é uma técnica bastante utilizada em sistemas de tempo real multiprocessados para isolar as tarefas e melhorar a previsibilidade do sistema. Atualmente, os estudos que avaliam o particionamento da memória cache em multiprocessadores carecem de dois pontos fundamentais. Primeiro, o mecanismo de particionamento da cache é tipicamente implementado em um ambiente simulado ou em um sistema operacional de propósito geral. Consequentemente, o impacto das atividades realizados pelo núcleo do sistema operacional, tais como o tratamento de interrupções e troca de contexto, no particionamento das tarefas tende a ser negligenciado. Segundo, a avaliação é restrita a um escalonador global ou particionado, e assim não comparando o desempenho do particionamento da cache em diferentes estratégias de escalonamento. Ademais, trabalhos recentes confirmaram que aspectos da implementação do SO, tal como a estrutura de dados usada no escalonamento e os mecanismos de tratamento de interrupções, impactam a escalonabilidade das tarefas de tempo real tanto quanto os aspectos teóricos. Entretanto, tais estudos também usaram sistemas operacionais de propósito geral com extensões de tempo real, que afetamos sobre custos de tempo de execução observados e a escalonabilidade das tarefas de tempo real. Adicionalmente, os algoritmos de escalonamento tempo real para multiprocessadores atuais não consideram cenários onde tarefas de tempo real acessam as mesmas linhas da cache, o que dificulta a estimativa do pior tempo de execução. Esta pesquisa aborda os problemas supracitados com as estratégias de particionamento da cache e com os algoritmos de escalonamento tempo real multiprocessados da seguinte forma. Primeiro, uma infraestrutura de tempo real para multiprocessadores é projetada e implementada em um sistema operacional embarcado. A infraestrutura consiste em diversos algoritmos de escalonamento tempo real, tais como o EDF global e particionado, e um mecanismo de particionamento da cache usando a técnica de coloração de páginas. Segundo, é apresentada uma comparação em termos da taxa de escalonabilidade considerando o sobre custo de tempo de execução da infraestrutura criada e de um sistema operacional de propósito geral com extensões de tempo real. Em alguns casos, o EDF global considerando o sobre custo do sistema operacional embarcado possui uma melhor taxa de escalonabilidade do que o EDF particionado com o sobre custo do sistema operacional de propósito geral, mostrando claramente como diferentes sistemas operacionais influenciam os escalonadores de tempo real críticos em multiprocessadores. Terceiro, é realizada uma avaliação do impacto do particionamento da memória cache em diversos escalonadores de tempo real multiprocessados. Os resultados desta avaliação indicam que um sistema operacional "leve" não compromete as garantias de tempo real e que o particionamento da cache tem diferentes comportamentos dependendo do escalonador e do tamanho do conjunto de trabalho das tarefas. Quarto, é proposto um algoritmo de particionamento de tarefas que atribui as tarefas que compartilham partições ao mesmo processador. Os resultados mostram que essa técnica de particionamento de tarefas reduz a disputa pelas linhas da cache compartilhadas e provê garantias de tempo real para sistemas críticos. Finalmente, é proposto um escalonador de tempo real de duas fases para multiprocessadores. O escalonador usa informações coletadas durante o tempo de execução das tarefas através dos contadores de desempenho em hardware. Com base nos valores dos contadores, o escalonador detecta quando tarefas de melhor esforço o interferem com tarefas de tempo real na cache. Assim é possível impedir que tarefas de melhor esforço acessem as mesmas linhas da cache que tarefas de tempo real. O resultado desta estratégia de escalonamento é o atendimento dos prazos críticos e não críticos das tarefas de tempo real.<br> / Abstracts: Modern multicore platforms feature multiple levels of cache memory placed between the processor and main memory to hide the latency of ordinary memory systems. The primary goal of this cache hierarchy is to improve average execution time (at the cost of predictability). The uncontrolled use of the cache hierarchy by realtime tasks may impact the estimation of their worst-case execution times (WCET), specially when real-time tasks access a shared cache level, causing a contention for shared cache lines and increasing the application execution time. This contention in the shared cache may leadto deadline losses, which is intolerable particularly for hard real-time (HRT) systems. Shared cache partitioning is a well-known technique used in multicore real-time systems to isolate task workloads and to improve system predictability. Presently, the state-of-the-art studies that evaluate shared cache partitioning on multicore processors lack two key issues. First, the cache partitioning mechanism is typically implemented either in a simulated environment or in a general-purpose OS (GPOS), and so the impact of kernel activities, such as interrupt handlers and context switching, on the task partitions tend to be overlooked. Second, the evaluation is typically restricted to either a global or partitioned scheduler, thereby by falling to compare the performance of cache partitioning when tasks are scheduled by different schedulers. Furthermore, recent works have confirmed that OS implementation aspects, such as the choice of scheduling data structures and interrupt handling mechanisms, impact real-time schedulability as much as scheduling theoretic aspects. However, these studies also used real-time patches applied into GPOSes, which affects the run-time overhead observed in these works and consequently the schedulability of real-time tasks. Additionally, current multicore scheduling algorithms do not consider scenarios where real-time tasks access the same cache lines due to true or false sharing, which also impacts the WCET. This thesis addresses these aforementioned problems with cache partitioning techniques and multicore real-time scheduling algorithms as following. First, a real-time multicore support is designed and implemented on top of an embedded operating system designed from scratch. This support consists of several multicore real-time scheduling algorithms, such as global and partitioned EDF, and a cache partitioning mechanism based on page coloring. Second, it is presented a comparison in terms of schedulability ratio considering the run-time overhead of the implemented RTOS and a GPOS patched with real-time extensions. In some cases, Global-EDF considering the overhead of the RTOS is superior to Partitioned-EDF considering the overhead of the patched GPOS, which clearly shows how different OSs impact hard realtime schedulers. Third, an evaluation of the cache partitioning impacton partitioned, clustered, and global real-time schedulers is performed.The results indicate that a lightweight RTOS does not impact real-time tasks, and shared cache partitioning has different behavior depending on the scheduler and the task's working set size. Fourth, a task partitioning algorithm that assigns tasks to cores respecting their usage of cache partitions is proposed. The results show that by simply assigning tasks that shared cache partitions to the same processor, it is possible to reduce the contention for shared cache lines and to provideHRT guarantees. Finally, a two-phase multicore scheduler that provides HRT and soft real-time (SRT) guarantees is proposed. It is shown that by using information from hardware performance counters at run-time, the RTOS can detect when best-effort tasks interfere with real-time tasks in the shared cache. Then, the RTOS can prevent best effort tasks from interfering with real-time tasks. The results also show that the assignment of exclusive partitions to HRT tasks together with the two-phase multicore scheduler provides HRT and SRT guarantees, even when best-effort tasks share partitions with real-time tasks.
|
4 |
Utilización de memorias cache con bloqueo en sistemas de tiempo realMartí Campoy, Antonio 30 September 2015 (has links)
Los procesadores actuales ofrecen una relación precio prestaciones muy interesante, además de otras cualidades como la garantía de funcionamiento o la gran disponibilidad de herramientas de desarrollo. Este conjunto de virtudes los hace muy atractivos para el desarrollo de cualquier sistema informático, incluidos los sistemas de tiempo real (STR).
Sin embargo, los sistemas de tiempo real necesitan verificar no sólo la corrección de los cálculos y operaciones que realizan, sino que también es necesario garantizar que las tareas que debe realizar el sistema se llevarán a cabo dentro de los límites temporales establecidos. Y esta garantía debe obtenerse bajo cualquier circunstancia y condición.
En la validación de la corrección temporal de un STR, tarea que recibe el nombre de Análisis de Planificabilidad, es donde surgen los problemas con los procesadores actuales. Dichos procesadores alcanzan altos niveles de prestaciones gracias a los avances en la tecnología, pero también gracias a la inclusión de mejoras en su estructura y arquitectura que permiten aprovechar los recursos disponibles de la mejor manera posible. Pero este buen uso de los recursos no se produce de forma constante, sino que dependerá de la estructura y los datos del programa que se ejecute. De este modo, las prestaciones ofrecidas por un procesador variarán para los diferentes programas que ejecute e incluso para el mismo programa en función de sus datos de entrada. Esta falta de determinismo en la respuesta temporal del procesador complica de manera importante la realización del análisis de planificabilidad.
Un caso concreto de estas mejoras estructurales que presentan una seria falta de determinismo es la memoria cache. Su inclusión en la jerarquía de memoria de los computadores ha permitido alcanzar unas prestaciones muy elevadas, por lo que se han convertido en un elemento común en la mayoría de los sistemas informáticos. Sin embargo, la gran variabilidad que introduce en los tiempos / Martí Campoy, A. (2003). Utilización de memorias cache con bloqueo en sistemas de tiempo real [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/55328
|
5 |
Griddler : uma estratégia configurável para armazenamento distribuído de objetos peer-to-peer que combina replicação e erasure coding com sistema de cache /Caetano, André Francisco Morielo. January 2017 (has links)
Orientador: Carlos Roberto Valêncio / Banca: Geraldo Francisco Donega Zafalon / Banca: Pedro Luiz Pizzigatti Correa / Resumo: Sistemas de gerenciamento de banco de dados, na sua essência, almejam garantir o armazenamento confiável da informação. Também é tarefa de um sistema de gerenciamento de banco de dados oferecer agilidade no acesso às informações. Nesse contexto, é de grande interesse considerar alguns fenômenos recentes: a progressiva geração de conteúdo não-estruturado, como imagens e vídeo, o decorrente aumento do volume de dados em formato digital nas mais diversas mídias e o grande número de requisições por parte de usuários cada vez mais exigentes. Esses fenômenos fazem parte de uma nova realidade, denominada Big Data, que impõe aos projetistas de bancos de dados um aumento nos requisitos de flexibilidade, escalabilidade, resiliência e velocidade dos seus sistemas. Para suportar dados não-estruturados foi preciso se desprender de algumas limitações dos bancos de dados convencionais e definir novas arquiteturas de armazenamento. Essas arquiteturas definem padrões para gerenciamento dos dados, mas um sistema de armazenamento deve ter suas especificidades ajustadas em cada nível de implementação. Em termos de escalabilidade, por exemplo, cabe a escolha entre sistemas com algum tipo de centralização ou totalmente descentralizados. Por outro lado, em termos de resiliência, algumas soluções utilizam um esquema de replicação para preservar a integridade dos dados por meio de cópias, enquanto outras técnicas visam a otimização do volume de dados armazenados. Por fim, ao mesmo tempo que são... / Abstract: Database management systems, in essence, aim to ensure the reliable storage of information. It is also the task of a database management system to provide agility in accessing information. In this context, it is of great interest to consider some recent phenomena: the progressive generation of unstructured content such as images and video, the consequent increase in the volume of data in digital format in the most diverse media and the large number of requests by users increasingly demanding. These phenomena are part of a new reality, named Big Data, that imposes on database designers an increase in the flexibility, scalability, resiliency, and speed requirements of their systems. To support unstructured data, it was necessary to get rid of some limitations of conventional databases and define new storage architectures. These architectures define standards for data management, but a storage system must have its specificities adjusted at each level of implementation. In terms of scalability, for example, it is up to the choice between systems with some type of centralization or totally decentralized. On the other hand, in terms of resiliency, some solutions utilize a replication scheme to preserve the integrity of the data through copies, while other techniques are aimed at optimizing the volume of stored data. Finally, at the same time that new network and disk technologies are being developed, one might think of using caching to optimize access to what is stored. This work explores and analyzes the different levels in the development of distributed storage systems. This work objective is to present an architecture that combines different resilience techniques. The scientific contribution of this work is, in addition to a totally decentralized suggestion of data allocation, the use of an access cache structure with adaptive algorithms in this environment / Mestre
|
6 |
Avaliação do compartilhamento das memórias cache no desempenho de arquiteturas multi-core / Performance evaluation of shared cache memory for multi-core architecturesAlves, Marco Antonio Zanata January 2009 (has links)
No atual contexto de inovações em multi-core, em que as novas tecnologias de integração estão fornecendo um número crescente de transistores por chip, o estudo de técnicas de aumento de vazão de dados é de suma importância para os atuais e futuros processadores multi-core e many-core. Com a contínua demanda por desempenho computacional, as memórias cache vêm sendo largamente adotadas nos diversos tipos de projetos arquiteturais de computadores. Os atuais processadores disponíveis no mercado apontam na direção do uso de memórias cache L2 compartilhadas. No entanto, ainda não está claro quais os ganhos e custos inerentes desses modelos de compartilhamento da memória cache. Assim, nota-se a importância de estudos que abordem os diversos aspectos do compartilhamento de memória cache em processadores com múltiplos núcleos. Portanto, essa dissertação visa avaliar diferentes compartilhamentos de memória cache, modelando e aplicando cargas de trabalho sobre as diferentes organizações, a fim de obter resultados significativos sobre o desempenho e a influência do compartilhamento da memória cache em processadores multi-core. Para isso, foram avaliados diversos compartilhamentos de memória cache, utilizando técnicas tradicionais de aumento de desempenho, como aumento da associatividade, maior tamanho de linha, maior tamanho de memória cache e também aumento no número de níveis de memória cache, investigando a correlação entre essas arquiteturas de memória cache e os diversos tipos de aplicações da carga de trabalho. Os resultados mostram a importância da integração entre os projetos de arquitetura de memória cache e o projeto físico da memória, a fim de obter o melhor equilíbrio entre tempo de acesso à memória cache e redução de faltas de dados. Nota-se nos resultados, dentro do espaço de projeto avaliado, que devido às limitações físicas e de desempenho, as organizações 1Core/L2 e 2Cores/L2, com tamanho total igual a 32 MB (bancos de 2 MB compartilhados), tamanho de linha igual a 128 bytes, representam uma boa escolha de implementação física em sistemas de propósito geral, obtendo um bom desempenho em todas aplicações avaliadas sem grandes sobrecustos de ocupação de área e consumo de energia. Além disso, como conclusão desta dissertação, mostra-se que, para as atuais e futuras tecnologias de integração, as tradicionais técnicas de ganho de desempenho obtidas com modificações na memória cache, como aumento do tamanho das memórias, incremento da associatividade, maiores tamanhos da linha, etc. não devem apresentar ganhos reais de desempenho caso o acréscimo de latência gerado por essas técnicas não seja reduzido, a fim de equilibrar entre a redução na taxa de faltas de dados e o tempo de acesso aos dados. / In the current context of innovations in multi-core processors, where the new integration technologies are providing an increasing number of transistors inside chip, the study of techniques for increasing data throughput has great importance for the current and future multi-core and many-core processors. With the continuous demand for performance, the cache memories have been widely adopted in various types of architectural designs of computers. Nowadays, processors on the market point out for the use of shared L2 cache memory. However, it is not clear the gains and costs of these shared cache memory models. Thus, studies that address different aspects of shared cache memory have great importance in context of multi-core processors. Therefore, this dissertation aims to evaluate different shared cache memory, modeling and applying workloads on different organizations in order to obtain significant results from the performance and the influence of the shared cache memory multi-core processors. Thus, several types of shared cache memory were evaluated using traditional techniques to increase performance, such as increasing the associativity, larger line size, larger cache memory and also the increase on the cache memory hierarchy, investigating the correlation between the cache memory architecture and the workload applications. The results show the importance of integration between cache memory architecture project and memory physical design in order to obtain the best trade-off between cache memory access time and cache misses. According to the results, within evaluations, due to physical limitations and performance, organizations 1Core/L2 and 2Cores/L2 with total cache size equal to 32MB, using banks of 2 MB, line size equal to 128 bytes, represent a good choice for physical implementation in general purpose systems, obtaining a good performance in all evaluated applications without major extra costs of area occupation and power consumption. Furthermore, as a conclusion in this dissertation is shown that, for current and future integration technologies, traditional techniques for performance gain obtained with changes in the cache memory such as, increase of the memory size, increasing the associativity, larger line sizes etc.. should not lead to real performance gains if the additional latency generated by these techniques was not treated, in order to balance between the reduction of cache miss rate and the data access time.
|
7 |
Avaliação do compartilhamento das memórias cache no desempenho de arquiteturas multi-core / Performance evaluation of shared cache memory for multi-core architecturesAlves, Marco Antonio Zanata January 2009 (has links)
No atual contexto de inovações em multi-core, em que as novas tecnologias de integração estão fornecendo um número crescente de transistores por chip, o estudo de técnicas de aumento de vazão de dados é de suma importância para os atuais e futuros processadores multi-core e many-core. Com a contínua demanda por desempenho computacional, as memórias cache vêm sendo largamente adotadas nos diversos tipos de projetos arquiteturais de computadores. Os atuais processadores disponíveis no mercado apontam na direção do uso de memórias cache L2 compartilhadas. No entanto, ainda não está claro quais os ganhos e custos inerentes desses modelos de compartilhamento da memória cache. Assim, nota-se a importância de estudos que abordem os diversos aspectos do compartilhamento de memória cache em processadores com múltiplos núcleos. Portanto, essa dissertação visa avaliar diferentes compartilhamentos de memória cache, modelando e aplicando cargas de trabalho sobre as diferentes organizações, a fim de obter resultados significativos sobre o desempenho e a influência do compartilhamento da memória cache em processadores multi-core. Para isso, foram avaliados diversos compartilhamentos de memória cache, utilizando técnicas tradicionais de aumento de desempenho, como aumento da associatividade, maior tamanho de linha, maior tamanho de memória cache e também aumento no número de níveis de memória cache, investigando a correlação entre essas arquiteturas de memória cache e os diversos tipos de aplicações da carga de trabalho. Os resultados mostram a importância da integração entre os projetos de arquitetura de memória cache e o projeto físico da memória, a fim de obter o melhor equilíbrio entre tempo de acesso à memória cache e redução de faltas de dados. Nota-se nos resultados, dentro do espaço de projeto avaliado, que devido às limitações físicas e de desempenho, as organizações 1Core/L2 e 2Cores/L2, com tamanho total igual a 32 MB (bancos de 2 MB compartilhados), tamanho de linha igual a 128 bytes, representam uma boa escolha de implementação física em sistemas de propósito geral, obtendo um bom desempenho em todas aplicações avaliadas sem grandes sobrecustos de ocupação de área e consumo de energia. Além disso, como conclusão desta dissertação, mostra-se que, para as atuais e futuras tecnologias de integração, as tradicionais técnicas de ganho de desempenho obtidas com modificações na memória cache, como aumento do tamanho das memórias, incremento da associatividade, maiores tamanhos da linha, etc. não devem apresentar ganhos reais de desempenho caso o acréscimo de latência gerado por essas técnicas não seja reduzido, a fim de equilibrar entre a redução na taxa de faltas de dados e o tempo de acesso aos dados. / In the current context of innovations in multi-core processors, where the new integration technologies are providing an increasing number of transistors inside chip, the study of techniques for increasing data throughput has great importance for the current and future multi-core and many-core processors. With the continuous demand for performance, the cache memories have been widely adopted in various types of architectural designs of computers. Nowadays, processors on the market point out for the use of shared L2 cache memory. However, it is not clear the gains and costs of these shared cache memory models. Thus, studies that address different aspects of shared cache memory have great importance in context of multi-core processors. Therefore, this dissertation aims to evaluate different shared cache memory, modeling and applying workloads on different organizations in order to obtain significant results from the performance and the influence of the shared cache memory multi-core processors. Thus, several types of shared cache memory were evaluated using traditional techniques to increase performance, such as increasing the associativity, larger line size, larger cache memory and also the increase on the cache memory hierarchy, investigating the correlation between the cache memory architecture and the workload applications. The results show the importance of integration between cache memory architecture project and memory physical design in order to obtain the best trade-off between cache memory access time and cache misses. According to the results, within evaluations, due to physical limitations and performance, organizations 1Core/L2 and 2Cores/L2 with total cache size equal to 32MB, using banks of 2 MB, line size equal to 128 bytes, represent a good choice for physical implementation in general purpose systems, obtaining a good performance in all evaluated applications without major extra costs of area occupation and power consumption. Furthermore, as a conclusion in this dissertation is shown that, for current and future integration technologies, traditional techniques for performance gain obtained with changes in the cache memory such as, increase of the memory size, increasing the associativity, larger line sizes etc.. should not lead to real performance gains if the additional latency generated by these techniques was not treated, in order to balance between the reduction of cache miss rate and the data access time.
|
8 |
Avaliação do compartilhamento das memórias cache no desempenho de arquiteturas multi-core / Performance evaluation of shared cache memory for multi-core architecturesAlves, Marco Antonio Zanata January 2009 (has links)
No atual contexto de inovações em multi-core, em que as novas tecnologias de integração estão fornecendo um número crescente de transistores por chip, o estudo de técnicas de aumento de vazão de dados é de suma importância para os atuais e futuros processadores multi-core e many-core. Com a contínua demanda por desempenho computacional, as memórias cache vêm sendo largamente adotadas nos diversos tipos de projetos arquiteturais de computadores. Os atuais processadores disponíveis no mercado apontam na direção do uso de memórias cache L2 compartilhadas. No entanto, ainda não está claro quais os ganhos e custos inerentes desses modelos de compartilhamento da memória cache. Assim, nota-se a importância de estudos que abordem os diversos aspectos do compartilhamento de memória cache em processadores com múltiplos núcleos. Portanto, essa dissertação visa avaliar diferentes compartilhamentos de memória cache, modelando e aplicando cargas de trabalho sobre as diferentes organizações, a fim de obter resultados significativos sobre o desempenho e a influência do compartilhamento da memória cache em processadores multi-core. Para isso, foram avaliados diversos compartilhamentos de memória cache, utilizando técnicas tradicionais de aumento de desempenho, como aumento da associatividade, maior tamanho de linha, maior tamanho de memória cache e também aumento no número de níveis de memória cache, investigando a correlação entre essas arquiteturas de memória cache e os diversos tipos de aplicações da carga de trabalho. Os resultados mostram a importância da integração entre os projetos de arquitetura de memória cache e o projeto físico da memória, a fim de obter o melhor equilíbrio entre tempo de acesso à memória cache e redução de faltas de dados. Nota-se nos resultados, dentro do espaço de projeto avaliado, que devido às limitações físicas e de desempenho, as organizações 1Core/L2 e 2Cores/L2, com tamanho total igual a 32 MB (bancos de 2 MB compartilhados), tamanho de linha igual a 128 bytes, representam uma boa escolha de implementação física em sistemas de propósito geral, obtendo um bom desempenho em todas aplicações avaliadas sem grandes sobrecustos de ocupação de área e consumo de energia. Além disso, como conclusão desta dissertação, mostra-se que, para as atuais e futuras tecnologias de integração, as tradicionais técnicas de ganho de desempenho obtidas com modificações na memória cache, como aumento do tamanho das memórias, incremento da associatividade, maiores tamanhos da linha, etc. não devem apresentar ganhos reais de desempenho caso o acréscimo de latência gerado por essas técnicas não seja reduzido, a fim de equilibrar entre a redução na taxa de faltas de dados e o tempo de acesso aos dados. / In the current context of innovations in multi-core processors, where the new integration technologies are providing an increasing number of transistors inside chip, the study of techniques for increasing data throughput has great importance for the current and future multi-core and many-core processors. With the continuous demand for performance, the cache memories have been widely adopted in various types of architectural designs of computers. Nowadays, processors on the market point out for the use of shared L2 cache memory. However, it is not clear the gains and costs of these shared cache memory models. Thus, studies that address different aspects of shared cache memory have great importance in context of multi-core processors. Therefore, this dissertation aims to evaluate different shared cache memory, modeling and applying workloads on different organizations in order to obtain significant results from the performance and the influence of the shared cache memory multi-core processors. Thus, several types of shared cache memory were evaluated using traditional techniques to increase performance, such as increasing the associativity, larger line size, larger cache memory and also the increase on the cache memory hierarchy, investigating the correlation between the cache memory architecture and the workload applications. The results show the importance of integration between cache memory architecture project and memory physical design in order to obtain the best trade-off between cache memory access time and cache misses. According to the results, within evaluations, due to physical limitations and performance, organizations 1Core/L2 and 2Cores/L2 with total cache size equal to 32MB, using banks of 2 MB, line size equal to 128 bytes, represent a good choice for physical implementation in general purpose systems, obtaining a good performance in all evaluated applications without major extra costs of area occupation and power consumption. Furthermore, as a conclusion in this dissertation is shown that, for current and future integration technologies, traditional techniques for performance gain obtained with changes in the cache memory such as, increase of the memory size, increasing the associativity, larger line sizes etc.. should not lead to real performance gains if the additional latency generated by these techniques was not treated, in order to balance between the reduction of cache miss rate and the data access time.
|
9 |
Increasing energy efficiency of processor caches via line usage predictors / Aumentando a eficiência energética da memória cache de processadores através de preditores de uso de linhas da cacheAlves, Marco Antonio Zanata January 2014 (has links)
O consumo de energia se torna cada vez mais importante para a arquitetura de processadores, onde o número de cores dentro de um mesmo chip está aumentando mas o total de energia disponível se mantém no mesmo nível ou até mesmo se reduz. Assim, técnicas para economizar energia, tais como opções de escala de frequência e desligamento automático de subsistemas, estão sendo usadas para manter a troca entre energia e desempenho. Para se obter alto desempenho, os atuais Chip Multiprocessors (CMPs) integram grandes memórias cache a fim de reduzir a latência média para acesso a memória principal, através da alocação do conjunto de dados da aplicação dentro do chip. Essas memórias cache tem sido projetadas tradicionalmente para explorar a localidade temporal usando políticas de substituição inteligentes e localidade espacial buscando todos os dados da linha da cache após uma falta de dados. Entretanto, estudos recentes mostraram que o número de sub-blocos dentro da linha da memória cache, que são realmente usados, costuma ser baixo, sendo que, os sub-blocos que são usados recebem poucos acessos antes de se tornarem mortos (isto é, nunca mais são acessados). Além disso, muitas da linhas da memória cache permanecem ligadas por longos períodos de tempo, mesmo que os dados não sejam usados novamente ou são inválidos. Para linhas de cache modificadas, a memória cache aguarda até que a linha seja expulsa para que esta seja gravada (write-back) de volta no próximo nível de memória. Essas escritas competem com as requisições de leitura (demanda do processador e prébusca da cache), aumentando a pressão no controlador de memória. Por essas razões, a eficiência energética e o desempenho das memórias cache não são ideais. Essa tese propõe a aplicação de preditores de uso de linhas da cache para aumentar a eficiência energética das memórias cache. São propostos os mecanismos Dead Sub-Block Predictor (DSBP) e Dead Line and Early Write-Back Predictor (DEWP) para permitir economia de energia sem que haja degradação do desempenho. DSBP é usado para prever quais sub-blocos da linha da cache serão usados e quantas vezes eles serão acessados de forma a trazer para a cache apenas os sub-blocos úteis e desliga-los após eles serem acessados pelo número de vezes previsto. DEWP prevê linhas de cache mortas assim que elas recebem o último acesso, desligando essas linhas. As linhas sujas são escalonadas para sofrerem write-back após a última operação de escrita, aumentando o potencial de salvar energia, reduzindo também a pressão no controlador de memória. Ambos os mecanismos propostos também reduzem a poluição nas memórias cache, dando prioridade para a expulsão de linhas mortas, melhorando as atuais políticas de substituição. Embora cada mecanismo apresentado seja capaz de funcionar separadamente dentro do sistema, ambos os mecanismos podem também ser misturados em uma mesma hierarquia de cache. Essa implementação mista é interessante pois a granularidade de sub-bloco é preferível para níveis de cache próximos do processador, onde as linhas de memória cache são expulsas rapidamente, enquanto o último nível de cache tende a usar toda a linha antes da sua expulsão. Com o intuito de avaliar os mecanismos propostos, é apresentado o Simulator of Non- Uniform Cache Architectures (SiNUCA). Esse simulador de microarquitetura com precisão de ciclos é validado em termos de desempenho e consumo de energia através da comparação com um processador real. Os resultados de desempenho foram obtidos executando aplicações das cargas de trabalho single-threaded do conjunto SPEC-CPU2006 e aplicações multi-threaded dos conjuntos SPEC-OMP2001 e NAS-NPB. Os resultados relativos a energia foram obtidos integrando o SiNUCA com as ferramentas de modelagem Multi-core Power, Area, and Timing (McPAT) e CACTI. Quando aplicados os mecanismos em todos os níveis de memória cache, observou-se em média uma redução de 36% no consumo de energia usando o DSBP, 25% usando o DEWP e 37% quando usou-se o DSBP nos níveis L1 e L2 e o DEWP no último nível. Todas essas reduções causaram uma perda desprezível de desempenho de menos de 4% em média. / Energy consumption is becoming more important for processor architectures, where the number of cores inside the chip is increasing and the total power budget is kept at the same level or even reduced. Thus, energy saving techniques such as frequency scaling options and automatic shutdown of sub-systems are being used to maintain the trade-off between power and performance. To deliver high performance, current Chip Multiprocessors (CMPs) integrate large caches in order to reduce the average memory access latency by allocating the applications’ working set on-chip. These cache memories have traditionally been designed to exploit temporal locality by using smart replacement policies, and spatial locality by fetching entire cache lines from memory on a cache miss. However, recent studies have shown that the number of sub-blocks within a line that are actually used is often low, and those sub-blocks that are used are accessed only a few times before becoming dead (that is, never accessed again). Additionally, many of the cache lines remain powered for a long period of time even if the data is not used again, or is invalid. For modified cache lines, the cache memory waits until the line is evicted to perform the write-back to next memory level. These write-backs compete with read requests (processor demand and cache prefetch), increasing the pressure on the memory controller. For these reasons, the energy efficiency and performance of cache memories are not ideal. This thesis introduces cache line usage predictors to increase the energy efficiency of cache memories. We propose the Dead Sub-Block Predictor (DSBP) and Dead Line and Early Write-Back Predictor (DEWP) mechanisms to enable energy savings without performance degradation. DSBP is used to predict which sub-blocks of a cache line will be actually accessed and how many times they will be used in order to bring into the cache only those sub-blocks that are necessary, and power them off after they are accessed the predicted number of times. DEWP predicts dead lines as soon as they receive the last access, and turns off these lines. Dirty lines are scheduled for write-back after the last write operation occurs, increasing the energy savings potential and also reducing the pressure on the memory controller. Both proposed mechanisms also reduce pollution in cache memories by prioritizing dead lines for eviction in the existing replacement policy. Although each introduced mechanism is capable of performing separately inside a system, both mechanisms can also be mixed in the same cache hierarchy. This mixed implementation is interesting because the sub-block granularity is more suitable for cache levels closer to the processor, where the cache lines are quickly evicted, while the Last- Level Cache (LLC) tends to use the whole cache line before its eviction. In order to evaluate our proposed mechanisms, we introduce the Simulator of Non- Uniform Cache Architectures (SiNUCA). This cycle-accurate microarchitecture simulator is validated in terms of performance and energy consumption by comparing it to a real processor. Our performance results were obtained executing single-threaded applications from SPEC-CPU2006 and multi-threaded applications from SPEC-OMP2001 and NASNPB benchmark suites. The energy related results were obtained by integrating SiNUCA with the Multi-core Power, Area, and Timing (McPAT) framework and the CACTI power modeling tool. When applying our mechanisms on all the cache levels, we observe on average a 36% energy reduction for DSBP, 25% energy reduction using DEWP and an average reduction of 37% in the energy consumption applying DSBP on L1 and L2 and DEWP on the LLC. All these reductions caused a negligible performance loss of less than 4% on average.
|
10 |
Increasing energy efficiency of processor caches via line usage predictors / Aumentando a eficiência energética da memória cache de processadores através de preditores de uso de linhas da cacheAlves, Marco Antonio Zanata January 2014 (has links)
O consumo de energia se torna cada vez mais importante para a arquitetura de processadores, onde o número de cores dentro de um mesmo chip está aumentando mas o total de energia disponível se mantém no mesmo nível ou até mesmo se reduz. Assim, técnicas para economizar energia, tais como opções de escala de frequência e desligamento automático de subsistemas, estão sendo usadas para manter a troca entre energia e desempenho. Para se obter alto desempenho, os atuais Chip Multiprocessors (CMPs) integram grandes memórias cache a fim de reduzir a latência média para acesso a memória principal, através da alocação do conjunto de dados da aplicação dentro do chip. Essas memórias cache tem sido projetadas tradicionalmente para explorar a localidade temporal usando políticas de substituição inteligentes e localidade espacial buscando todos os dados da linha da cache após uma falta de dados. Entretanto, estudos recentes mostraram que o número de sub-blocos dentro da linha da memória cache, que são realmente usados, costuma ser baixo, sendo que, os sub-blocos que são usados recebem poucos acessos antes de se tornarem mortos (isto é, nunca mais são acessados). Além disso, muitas da linhas da memória cache permanecem ligadas por longos períodos de tempo, mesmo que os dados não sejam usados novamente ou são inválidos. Para linhas de cache modificadas, a memória cache aguarda até que a linha seja expulsa para que esta seja gravada (write-back) de volta no próximo nível de memória. Essas escritas competem com as requisições de leitura (demanda do processador e prébusca da cache), aumentando a pressão no controlador de memória. Por essas razões, a eficiência energética e o desempenho das memórias cache não são ideais. Essa tese propõe a aplicação de preditores de uso de linhas da cache para aumentar a eficiência energética das memórias cache. São propostos os mecanismos Dead Sub-Block Predictor (DSBP) e Dead Line and Early Write-Back Predictor (DEWP) para permitir economia de energia sem que haja degradação do desempenho. DSBP é usado para prever quais sub-blocos da linha da cache serão usados e quantas vezes eles serão acessados de forma a trazer para a cache apenas os sub-blocos úteis e desliga-los após eles serem acessados pelo número de vezes previsto. DEWP prevê linhas de cache mortas assim que elas recebem o último acesso, desligando essas linhas. As linhas sujas são escalonadas para sofrerem write-back após a última operação de escrita, aumentando o potencial de salvar energia, reduzindo também a pressão no controlador de memória. Ambos os mecanismos propostos também reduzem a poluição nas memórias cache, dando prioridade para a expulsão de linhas mortas, melhorando as atuais políticas de substituição. Embora cada mecanismo apresentado seja capaz de funcionar separadamente dentro do sistema, ambos os mecanismos podem também ser misturados em uma mesma hierarquia de cache. Essa implementação mista é interessante pois a granularidade de sub-bloco é preferível para níveis de cache próximos do processador, onde as linhas de memória cache são expulsas rapidamente, enquanto o último nível de cache tende a usar toda a linha antes da sua expulsão. Com o intuito de avaliar os mecanismos propostos, é apresentado o Simulator of Non- Uniform Cache Architectures (SiNUCA). Esse simulador de microarquitetura com precisão de ciclos é validado em termos de desempenho e consumo de energia através da comparação com um processador real. Os resultados de desempenho foram obtidos executando aplicações das cargas de trabalho single-threaded do conjunto SPEC-CPU2006 e aplicações multi-threaded dos conjuntos SPEC-OMP2001 e NAS-NPB. Os resultados relativos a energia foram obtidos integrando o SiNUCA com as ferramentas de modelagem Multi-core Power, Area, and Timing (McPAT) e CACTI. Quando aplicados os mecanismos em todos os níveis de memória cache, observou-se em média uma redução de 36% no consumo de energia usando o DSBP, 25% usando o DEWP e 37% quando usou-se o DSBP nos níveis L1 e L2 e o DEWP no último nível. Todas essas reduções causaram uma perda desprezível de desempenho de menos de 4% em média. / Energy consumption is becoming more important for processor architectures, where the number of cores inside the chip is increasing and the total power budget is kept at the same level or even reduced. Thus, energy saving techniques such as frequency scaling options and automatic shutdown of sub-systems are being used to maintain the trade-off between power and performance. To deliver high performance, current Chip Multiprocessors (CMPs) integrate large caches in order to reduce the average memory access latency by allocating the applications’ working set on-chip. These cache memories have traditionally been designed to exploit temporal locality by using smart replacement policies, and spatial locality by fetching entire cache lines from memory on a cache miss. However, recent studies have shown that the number of sub-blocks within a line that are actually used is often low, and those sub-blocks that are used are accessed only a few times before becoming dead (that is, never accessed again). Additionally, many of the cache lines remain powered for a long period of time even if the data is not used again, or is invalid. For modified cache lines, the cache memory waits until the line is evicted to perform the write-back to next memory level. These write-backs compete with read requests (processor demand and cache prefetch), increasing the pressure on the memory controller. For these reasons, the energy efficiency and performance of cache memories are not ideal. This thesis introduces cache line usage predictors to increase the energy efficiency of cache memories. We propose the Dead Sub-Block Predictor (DSBP) and Dead Line and Early Write-Back Predictor (DEWP) mechanisms to enable energy savings without performance degradation. DSBP is used to predict which sub-blocks of a cache line will be actually accessed and how many times they will be used in order to bring into the cache only those sub-blocks that are necessary, and power them off after they are accessed the predicted number of times. DEWP predicts dead lines as soon as they receive the last access, and turns off these lines. Dirty lines are scheduled for write-back after the last write operation occurs, increasing the energy savings potential and also reducing the pressure on the memory controller. Both proposed mechanisms also reduce pollution in cache memories by prioritizing dead lines for eviction in the existing replacement policy. Although each introduced mechanism is capable of performing separately inside a system, both mechanisms can also be mixed in the same cache hierarchy. This mixed implementation is interesting because the sub-block granularity is more suitable for cache levels closer to the processor, where the cache lines are quickly evicted, while the Last- Level Cache (LLC) tends to use the whole cache line before its eviction. In order to evaluate our proposed mechanisms, we introduce the Simulator of Non- Uniform Cache Architectures (SiNUCA). This cycle-accurate microarchitecture simulator is validated in terms of performance and energy consumption by comparing it to a real processor. Our performance results were obtained executing single-threaded applications from SPEC-CPU2006 and multi-threaded applications from SPEC-OMP2001 and NASNPB benchmark suites. The energy related results were obtained by integrating SiNUCA with the Multi-core Power, Area, and Timing (McPAT) framework and the CACTI power modeling tool. When applying our mechanisms on all the cache levels, we observe on average a 36% energy reduction for DSBP, 25% energy reduction using DEWP and an average reduction of 37% in the energy consumption applying DSBP on L1 and L2 and DEWP on the LLC. All these reductions caused a negligible performance loss of less than 4% on average.
|
Page generated in 0.0947 seconds