Spelling suggestions: "subject:"mesoporöse bondmaterialien"" "subject:"mesoporöse bodenmaterialien""
1 |
Mesoporous organosilica materials with amine functions : surface characteristics and chirality / Mesoporous organosilica materials with amine functions : surface characteristics and chiralityVoß, Rebecca January 2005 (has links)
In this work mesoporous organisilica materials are synthesized through the silica sol-gel process. For this a new class of precursors which are also surfactant are synthesized and self-assembled. This leads to a high surface area functionality which is analysized with copper (II) and water adsorption. / Im Rahmen dieser Arbeit werden mesoporöse Amin-funktionalisierte Organo-Silikate durch den Silika Sol-Gel Prozess hergestellt. Dabei werden neue Alkoxysilyl-Precursoren synthetisiert und condensiert die die gewünschte Funktion auf die Oberfläche dirigieren. Herstellt werden primäre, secundäre und chirale Amine. Die Oberflächenfunktionalität wird mit Kupfer (II) und Wasser Adsorption analysiert.
|
2 |
Sorption von Fluiden in mesoporösen SilikamaterialienMüter, Dirk 26 May 2010 (has links)
Die geordneten mesoporösen Silikamaterialien SBA-15 und MCM-41 zeichnen sich durch lange zylindrische Poren aus, die auf einem 2D-hexagonalen Gitter arrangiert sind. Auf Grund dieser Eigenschaften finden sie vielfach Anwendung in der Industrie, bieten jedoch auch die Möglichkeit Sorptionsvorgänge und die dadurch induzierten Verformungen auf der Nanometerebene zu untersuchen. Dazu werden im ersten Teil dieser Arbeit Kleinwinkelröntgenstreuungsdaten mit Hilfe eines Formfaktormodells angefittet, um die Adsorption von Fluid in den Poren in Abhängigkeit vom Dampfdruck nachvollziehen zu können. Basierend auf diesen Ergebnissen wird ein Gittermodell eingeführt, welches die Vorgänge während der Sorption mit Hilfe heuristischer Füllmechanismen reproduziert und im Abgleich mit experimentellen Daten Auskunft über die Verteilung der Porosität auf Mikro- und Mesoporen in SBA-15 gibt. Weiterhin wird der Einfluss der begrenzten Geometrie auf die Selbstassemblierung von Tensiden in SBA-15 untersucht. Hierzu werden Neutronenstreudaten durch die Kombination eines Formfaktormodells für die Bragg-Streuung und des Teubner-Strey-Modells für die diffuse Streuung modelliert und interpretiert. Der zweite Teil der Arbeit beschäftigt sich mit den elastischen Verformungen der mesoporösen Materialien durch die Fluidsorption. Dazu wird eine Molekulardynamik-Simulation eines Lennard-Jones-Fluids in einer Schlitzpore vorgestellt, um den Ursprung dieser Verformungen auf der mikroskopischen Ebene zu untersuchen. Diese Ergebnisse fließen anschließend in ein makroskopisches Modell eines ganzen Kristalliten des mesoporösen Materials ein, wodurch ein einfaches Multiskalenmodell entsteht. Die makroskopische Ebene wird dabei durch eine Finite-Elemente-Simulation beschrieben, die im Abgleich mit experimentellen Daten weitere Aussagen über die elastischen Eigenschaften des Materials erlaubt. / The ordered mesoporous silica materials SBA-15 and MCM-41 consist of long cylindrical pores arranged on a 2D-hexagonal lattice. Due to these features, they are used for a range of industrial applications but provide also a possibility to study sorption processes and sorption-induced deformations on the nanoscale. In the first part of this work small-angle X-ray scattering data are fitted with a form factor model in order to examine fluid adsorption in the pores. Based on these results a lattice model is introduced which reproduces the sorption process using heuristic filling mechanisms and clarifies how the porosity of SBA-15 is composed out of micro- and mesopores. Furthermore, the influence of the confined geometry on the self-assembly of surfactants in SBA-15 is studied. For this, neutron scattering data are modeled and interpreted by the combination of a form factor model for the Bragg scattering and the Teubner-Strey model for the diffuse scattering. The second part of this work focuses on the elastic deformations caused by fluid sorption in the mesoporous materials. A Molecular Dynamics simulation of a Lennard-Jones fluid in a slit-pore is presented in order to reveal the origin of these deformations on the microscopic scale. These results are subsequently implemented into a macroscopic model of whole crystallite, thereby creating a simple multi-scale model. The macroscopic scale is modeled with a Finite Elements simulation, which by comparison with experimental data delivers further insights into the elastic properties of the material.
|
3 |
Experimental and theoretical studies on germanium-containing precursors for twin polymerization / Experimentelle und theoretische Untersuchungen an germaniumhaltigen Präkursoren für die ZwillingspolymerisationKitschke, Philipp 24 June 2016 (has links) (PDF)
Im Fokus dieser Arbeit standen zwei Ziele. Zum einem war es Forschungsgegenstand, dass Konzept der Zwillingspolymerisation auf germaniumhaltige, molekulare Vorstufen wie zum Beispiel Germylene, spirozyklische Germaniumverbindungen und molekulare Germanate zu erweitern und somit organisch-anorganische Komposite beziehungsweise Hybridmaterialien darzustellen. Dazu wurden neuartige Germaniumalkoxide auf der Basis von Benzylalkoholaten, Salicylalkoholaten sowie Benzylthiolaten synthetisiert, charakterisiert und auf ihre Fähigkeit Komposite beziehungsweise Hybridmaterialien über den Prozess der Zwillingspolymerisation zu erhalten studiert.
Ein zweites Ziel dieser Arbeit war es, Beziehungen zwischen der Struktur und der Reaktivität dieser molekularen Vorstufen sowie deren Einfluss auf die Eigenschaften der erhaltenen Polymerisationsprodukte zu identifizieren und systematisch zu untersuchen. Hierfür wurden zum einen verschiedene Substituenten, welche unterschiedliche elektronische sowie sterische Eigenschaften aufweisen, an den aromatischen Einheiten der molekularen Vorstufen eingeführt. Die Effekte der Substituenten auf den Prozess der Zwillingspolymerisation und auf die Eigenschaften der Komposite beziehungsweise Hybridmaterialien wurden für die Verbindungsklasse der Germanium(II)salicylalkoholate, der molekularen Germanate sowie der spiro-zyklischen Siliziumsalicylalkoholate untersucht. Spirozyklische Siliziumsalicylalkoholate, wie zum Beispiel 4H,4’H-2,2‘-Spirobi[benzo[d][1,3,2]dioxasilin], wurden im Rahmen dieser Arbeit mit einbezogen, da sie aufgrund ihres nahezu idealen Zwillingspolymerisationsprozesses geeignete Modelverbindungen für Reaktivitätsstudien darstellen. Zudem wurde der Einfluss der Substituenten auf die Charakteristika der aus den Kompositen beziehungsweise Hybridmaterialien erhaltenen Folgeprodukte (poröse Kohlenstoffmaterialien und oxydische Materialien) studiert. Des Weiteren wurde eine Serie von spirozyklischen Germaniumthiolaten, welche isostrukturell zu 4H,4’H-2,2‘-Spirobi[benzo[d][1,3,2]dioxasilin] sind, synthetisiert, um systematisch den Einfluss der Chalkogenide, Sauerstoff und Schwefel, in benzylständiger sowie phenylständiger Position auf deren Reaktionsvermögen im Polymerisationsprozess zu untersuchen.
Die experimentellen Ergebnisse zu den Struktur-Reaktivitätsbeziehungsstudien wurden, soweit es jeweils durchführbar war, mittels quantenchemische Rechnungen validiert und die daraus gezogenen Schlüsse in die Diskussion zur Interpretation der experimentellen Ergebnisse mit einbezogen.
|
4 |
Synthese nanostrukturierter, organisch-anorganischer Hybridmaterialien über ZwillingspolymerisationLöschner, Tina 06 August 2013 (has links) (PDF)
Im Fokus dieser Arbeit stand die Methode Zwillingspolymerisation zur Synthese organisch-anorganischer Hybridmaterialien. Die simultane Zwillingspolymerisation wird als neues Konzept zur gezielten Herstellung homogener, nanostrukturierter Hybridmaterialien unterschiedlicher Zusammensetzung vorgestellt. Hierfür wurden die Zwillingsmonomere 2,2’-Spirobi[4H-1,3,2-benzodioxasilin] und 2,2 Dimethyl-4H-1,3,2-benzodioxasilin in einem Arbeitsschritt gemeinsam polymerisiert.
Die erhaltenen Phenolharz-Siliciumdioxid/Dimethylsiloxan-Hybridmaterialien weisen aufgrund einstellbarer Syntheseparameter unterschiedliche Eigenschaftsprofile auf, die systematisch analysiert wurden. Die Charakterisierung der Produkte erfolgte mit Hilfe der Festkörper-NMR-Spektroskopie, Elektronenmikroskopie, DSC, TGA-MS, sowie durch Extraktionsversuche und die Erzeugung und Analyse poröser Materialien.
Neben der simultanen Zwillingspolymerisation wird die Synthese, Charakterisierung und thermisch induzierte Polymerisation literaturunbekannter Silicium-Spiroverbindungen mit einfach- oder zweifach substituierter Salicylalkohol-Einheit beschrieben. Hierbei wurden nanostrukturierte Hybridmaterialien mit teils hohem löslichen Anteil erhalten. Die Produktbildung wird in Abhängigkeit von der Entstehung und Weiterreaktion gefundener Chinonmethid-Strukturen diskutiert.
|
5 |
Synthese nanostrukturierter, organisch-anorganischer Hybridmaterialien über ZwillingspolymerisationLöschner, Tina 05 July 2013 (has links)
Im Fokus dieser Arbeit stand die Methode Zwillingspolymerisation zur Synthese organisch-anorganischer Hybridmaterialien. Die simultane Zwillingspolymerisation wird als neues Konzept zur gezielten Herstellung homogener, nanostrukturierter Hybridmaterialien unterschiedlicher Zusammensetzung vorgestellt. Hierfür wurden die Zwillingsmonomere 2,2’-Spirobi[4H-1,3,2-benzodioxasilin] und 2,2 Dimethyl-4H-1,3,2-benzodioxasilin in einem Arbeitsschritt gemeinsam polymerisiert.
Die erhaltenen Phenolharz-Siliciumdioxid/Dimethylsiloxan-Hybridmaterialien weisen aufgrund einstellbarer Syntheseparameter unterschiedliche Eigenschaftsprofile auf, die systematisch analysiert wurden. Die Charakterisierung der Produkte erfolgte mit Hilfe der Festkörper-NMR-Spektroskopie, Elektronenmikroskopie, DSC, TGA-MS, sowie durch Extraktionsversuche und die Erzeugung und Analyse poröser Materialien.
Neben der simultanen Zwillingspolymerisation wird die Synthese, Charakterisierung und thermisch induzierte Polymerisation literaturunbekannter Silicium-Spiroverbindungen mit einfach- oder zweifach substituierter Salicylalkohol-Einheit beschrieben. Hierbei wurden nanostrukturierte Hybridmaterialien mit teils hohem löslichen Anteil erhalten. Die Produktbildung wird in Abhängigkeit von der Entstehung und Weiterreaktion gefundener Chinonmethid-Strukturen diskutiert.
|
6 |
Experimental and theoretical studies on germanium-containing precursors for twin polymerizationKitschke, Philipp 10 June 2016 (has links)
Im Fokus dieser Arbeit standen zwei Ziele. Zum einem war es Forschungsgegenstand, dass Konzept der Zwillingspolymerisation auf germaniumhaltige, molekulare Vorstufen wie zum Beispiel Germylene, spirozyklische Germaniumverbindungen und molekulare Germanate zu erweitern und somit organisch-anorganische Komposite beziehungsweise Hybridmaterialien darzustellen. Dazu wurden neuartige Germaniumalkoxide auf der Basis von Benzylalkoholaten, Salicylalkoholaten sowie Benzylthiolaten synthetisiert, charakterisiert und auf ihre Fähigkeit Komposite beziehungsweise Hybridmaterialien über den Prozess der Zwillingspolymerisation zu erhalten studiert.
Ein zweites Ziel dieser Arbeit war es, Beziehungen zwischen der Struktur und der Reaktivität dieser molekularen Vorstufen sowie deren Einfluss auf die Eigenschaften der erhaltenen Polymerisationsprodukte zu identifizieren und systematisch zu untersuchen. Hierfür wurden zum einen verschiedene Substituenten, welche unterschiedliche elektronische sowie sterische Eigenschaften aufweisen, an den aromatischen Einheiten der molekularen Vorstufen eingeführt. Die Effekte der Substituenten auf den Prozess der Zwillingspolymerisation und auf die Eigenschaften der Komposite beziehungsweise Hybridmaterialien wurden für die Verbindungsklasse der Germanium(II)salicylalkoholate, der molekularen Germanate sowie der spiro-zyklischen Siliziumsalicylalkoholate untersucht. Spirozyklische Siliziumsalicylalkoholate, wie zum Beispiel 4H,4’H-2,2‘-Spirobi[benzo[d][1,3,2]dioxasilin], wurden im Rahmen dieser Arbeit mit einbezogen, da sie aufgrund ihres nahezu idealen Zwillingspolymerisationsprozesses geeignete Modelverbindungen für Reaktivitätsstudien darstellen. Zudem wurde der Einfluss der Substituenten auf die Charakteristika der aus den Kompositen beziehungsweise Hybridmaterialien erhaltenen Folgeprodukte (poröse Kohlenstoffmaterialien und oxydische Materialien) studiert. Des Weiteren wurde eine Serie von spirozyklischen Germaniumthiolaten, welche isostrukturell zu 4H,4’H-2,2‘-Spirobi[benzo[d][1,3,2]dioxasilin] sind, synthetisiert, um systematisch den Einfluss der Chalkogenide, Sauerstoff und Schwefel, in benzylständiger sowie phenylständiger Position auf deren Reaktionsvermögen im Polymerisationsprozess zu untersuchen.
Die experimentellen Ergebnisse zu den Struktur-Reaktivitätsbeziehungsstudien wurden, soweit es jeweils durchführbar war, mittels quantenchemische Rechnungen validiert und die daraus gezogenen Schlüsse in die Diskussion zur Interpretation der experimentellen Ergebnisse mit einbezogen.:Contents
List of Abbreviations S. 11
1 Introduction S.14
2 Germanium alkoxides and germanium thiolates S. 18
2.1 Preamble S. 18
2.2 Germanium alkoxides S. 18
2.2.1 Germanium(II) alkoxides S. 20
2.2.2 Germanium(IV) alkoxides S. 23
2.2.3 Alkoxidogermanates S. 29
2.3 Germanium thiolates S. 31
2.3.1 Germanium(II) thiolates S. 33
2.3.2 Germanium(IV) thiolates S. 34
2.3.3 Thiolatogermanates and cationic germanium thiolato transition metal complexes S. 36
2.4 Germanium alkoxido thiolates S. 38
2.5 Concluding remarks S. 40
3 Individual Contributions S. 43
4 Microporous Carbon and Mesoporous Silica by Use of Twin Polymerization: An integrated Experimental and Theoretical Approach on Precursor Reactivity S. 46
4.1 Abstract S. 46
4.2 Introduction S.46
4.3 Results and Discussion S. 48
4.3.1 Synthesis and Characterization S. 48
4.3.2 Thermally induced twin polymerization of monosubstituted Precursors (para position) S.49
4.3.2.1 Studies on reactivity according to thermally induced twin polymerization S. 50
4.3.2.2 Characterization of the hybrid materials as obtained by thermally induced twin polymerization S. 51
4.3.2.3 Thermally induced twin polymerization of di-substituted precursors (ortho and para position) S. 52
4.3.2.4 Conclusions drawn for the thermally induced twin polymerization S. 54
4.3.3 Proton-assisted twin polymerization S. 54
4.3.3.1 Studies on the reactivity according to proton-assisted twin polymerization S.55
4.3.3.2 Characterization of the hybrid materials as obtained by proton-assisted twin polymerization S.56
4.3.3.3 Computational studies on proton-assisted twin polymerization S. 58
4.3.3.4 Conclusions drawn for the process of proton-assisted twin polymerization S. 60
4.3.4 Characterization of the porous materials S.61
4.4 Conclusions S.64
4.5 Experimental Section S. 65
4.5.1 General S.65
4.5.2 General procedure for the synthesis of phenolic resin-silica hybrid materials by thermally induced twin polymerization in melt - exemplified for compound 1 S. 66
4.5.3 General procedure for the synthesis of phenolic resin-silica hybrid materials by proton-assisted twin polymerization in solution - exemplified for compound 1 S. 66
4.5.4 General procedure for the synthesis of microporous carbon - exemplified for hybrid material HM-1T S. 66
4.5.5 General procedure for the synthesis of mesoporous silica - exemplified for hybrid material HM-1T S. 67
4.5.6 Single-Crystal X-ray Diffraction Analyses S. 67
4.5.7 Computational Details S. 67
4.6 Acknowledgments S. 68
4.7 Keywords S.68
4.8 Supporting Information Chapter 4 S. 69
5 Synthesis of germanium dioxide nanoparticles in benzyl alcohols – a comparison S. 82
5.1 Abstract S. 82
5.2 Introduction S. 82
5.3 Results and Discussion S.83
5.4 Conclusions S. 87
5.5 Experimental Section S. 87
5.5.1 General S. 87
5.5.2 Syntheses S. 88
5.5.3 Synthesis of GeO2 in ortho-methoxy benzyl alcohol – sample A S. 88
5.5.4 Synthesis of GeO2 in benzyl alcohol under inert conditions – sample B S. 89
5.5.5 Synthesis of GeO2 in benzyl alcohol under ambient conditions – sample C S. 89
5.6 Acknowledgments S. 89
5.7 Keywords S.89
5.8 Supporting Information Chapter 5 S. 90
6 From a Germylene to an “Inorganic Adamantane”: [{Ge₄(μ-O)₂(μ-OH)₄}{W(CO)₅}₄]∙4THF S. 93
6.1 Abstract S.93
6.2 Introduction S. 93
6.3 Results and Discussion S. 94
6.4 Conclusions S. 98
6.5 Experimental Section S. 99
6.5.1 General S.99
6.5.2 Synthesis of germanium(II) (2-methoxyphenyl)methoxide (9) S. 99
6.5.3 Synthesis of [{Ge4(μ-O)2(μ-OH)4}{W(CO)5}4]·4THF (10·4THF) S. 100
6.5.4 Single-Crystal X-ray Diffraction Analyses S. 100
6.5.4.1 Crystal Data for (9)2 S. 101
6.5.4.2 Crystal Data for 10·4THF S. 101
6.5.5 Computational Details S. 101
6.6 Acknowledgments S. 101
6.7 Keywords S.101
6.8 Supporting Information Chapter 6 S. 102
7 Synthesis, characterization and Twin Polymerization of a novel dioxagermine S. 110
7.1 Abstract S. 110
7.2 Introduction S.110
7.3 Results and Discussion S. 111
7.3.1 Single-crystal X-ray diffraction analysis S. 111
7.3.2 IR spectroscopy S. 112
7.3.3 Mass spectrum S. 114
7.3.4 DSC/TGA analysis S. 116
7.3.5 Polymerization S. 117
7.4 Conclusions S. 118
7.5 Materials and Methods S.118
7.5.1 General S. 118
7.5.2 Synthesis of 5-bromo-2-hydroxybenzyl alcohol S. 119
7.5.3 Synthesis of di-tert-butyl-di-ethoxy germane S.119
7.5.4 Synthesis of 6-bromo-2,2-di-tert-butyl-4H-1,3,2-benzo[d]dioxagermine (11) S. 120
7.5.5 Polymerization of compound 11 S. 120
7.5.6 X-ray diffraction analysis of compound 11 S.120
7.5.6.1 Crystal data for compound 11 S.120
7.5.7 Computational Details S.121
7.6 Acknowledgments S.121
7.7 Keywords S. 121
7.8 Supporting Information Chapter 7 S. 122
8 Intramolecular C-O Insertion of a Germanium(II) Salicyl Alcoholate: A Combined Experimental and Theoretical Study S. 125
8.1 Abstract S.125
8.2 Introduction S. 125
8.3 Results and Discussion S.126
8.3.1 Syntheses and Characterization S. 126
8.3.2 1H NMR Spectroscopic Studies S.132
8.3.3 DFT-D Calculations S.134
8.4 Conclusions S. 137
8.5 Experimental Section S. 138
8.5.1 General S. 138
8.5.2 Synthesis of germanium(II) 2-tert-butyl-4-methyl-6-(oxidomethyl)phenolate (12) S. 139
8.5.3 Synthesis of 2,4,6,8-tetrakis(3-tert-butyl-5-methyl-2-oxidophenyl)methanide-1,3,5,7,2,4,6,8-tetraoxidogermocane (13) S. 139
8.5.3.1 Method a) S.139
8.5.3.2 Method b) S. 140
8.5.4 Synthesis of 7,8'-di-tert-butyl-5,6'-dimethyl-3H,4'H-spiro[benzo[d][1,2]oxager-mole-2,2'-benzo[d][1,3,2]dioxagermine] (14) S. 140
8.5.4.1 Method a) S. 140
8.5.4.2 Method b) S. 141
8.5.4.3 Method c) S. 141
8.5.5 Synthesis of the [4-(dimethylamino)pyridine][germanium(II)-2-tert-butyl-4-meth-yl-6-(oxidomethyl)phenolate] (15) S. 141
8.5.6 1H NMR spectroscopic study i) S. 142
8.5.7 1H NMR spectroscopic study ii) S. 142
8.5.7.1 Method a) S. 142
8.5.7.2 Method b) S. 142
8.5.8 1H NMR spectroscopic study iii) S. 142
8.5.8.1 Method a) S. 142
8.5.8.2 Method b) S. 142
8.5.9 1H NMR spectroscopic study iv) S. 143
8.5.10 1H NMR spectroscopic study of the mixture of complex 15 and 3-tert-butyl-2-hydroxy-5-methylbenzyl alcohol in CDCl3 S. 143
8.5.11 1H NMR spectroscopic study of complex 15 in CDCl3 at elevated temperature S. 143
8.5.12 Reaction of complex 15 at elevated temperature S. 143
8.5.13 Single-crystal X-ray diffraction analyses S. 143
8.5.14 Computational Details S.144
8.6 Acknowledgments S. 145
8.7 Keywords S.145
8.8 Supporting Information Chapter 8 S. 146
9 Porous Ge@C materials via twin polymerization of germanium(II) salicyl alcoholates for Li-ion batteries S. 159
9.1 Abstract S. 159
9.2 Introduction S. 159
9.3 Results and Discussion S. 160
9.3.1 Synthesis and Characterization of germylenes S. 160
9.3.2 Twin polymerization S. 164
9.3.2.1 Studies on the reactivity S. 164
9.3.2.2 Characterization of the hybrid materials obtained by thermally induced twin polymerization S. 166
9.3.3 Synthesis and characterization of porous materials S. 168
9.3.4 Electrochemical measurements S. 170
9.4 Conclusions S. 172
9.5 Experimental Section S.172
9.5.1 General S.172
9.5.2 Synthesis of germanium(II) 2-(oxidomethyl)phenolate (16) S. 174
9.5.3 Synthesis of germanium(II) 4-methyl-2-(oxidomethyl)phenolate (17) S. 174
9.5.4 Synthesis of germanium(II) 4-bromo-2-(oxidomethyl)phenolate (18) S. 175
9.5.5 General procedure for the synthesis of phenolic resin-germanium oxide hybrid materials by thermally induced twin polymerization in melt - exemplified for compound 16 S. 175
9.5.6 General procedure for the synthesis of porous Ge@C materials - exemplified for hybrid material HM-16 S.175
9.5.7 General procedure for the synthesis of germanium oxide - exemplified for hybrid material HM-16 S.176
9.5.8 Single-crystal X-ray diffraction analyses S. 176
9.5.9 Computational Details S. 177
9.5.10 Electrode fabrication, cell assembly and electrochemical measurements S. 178
9.6 Acknowledgments S.178
9.7 Keywords S. 178
9.8 Supporting Information Chapter 9 S.179
10 From molecular germanates to microporous Ge@C via twin polymerization S.199
10.1 Abstract S.199
10.2 Introduction 199
10.3 Results and Discussion S. 201
10.3.1 Syntheses and Characterization S. 201
10.3.2 Twin polymerization of germanate 19 S. 204
10.3.3 Synthesis and characterization of the porous materials S. 205
10.3.4 Electrochemical measurements S.206
10.4 Conclusions S. 207
10.5 Experimental Section S. 208
10.5.1 General S. 208
10.5.2 Synthesis of bis(dimethylammonium) tris[2-(oxidomethyl)phenolate(2-)]germa-nate (19) S. 209
10.5.3 Synthesis of bis(dimethylammonium) tris[4-methyl-2-(oxidomethyl)pheno-late(2-)]germanate (20) S. 210
10.5.4 Synthesis of bis(dimethylammonium) tris[4-bromo-2-(oxidomethyl)pheno-late(2-)]germanate (21) S.210
10.5.5 Synthesis of dimethylammonium bis[2-tert-butyl-4-methyl-6-(oxidomethyl)phe-nolate(2-)][2-tert-butyl-4-methyl-6-(hydroxymethyl)phenolate(1-)]germanate (22) S. 211
10.5.6 Synthesis of phenolic resin-germanium dioxide hybrid materials by thermally induced twin polymerization in melt - HM-19 S. 211
10.5.7 Synthesis of porous Ge@C material C-19 starting from HM-19 S. 212
10.5.8 Synthesis of germanium dioxide material Ox-19 - starting from HM-19 S.212
10.5.9 Single-crystal X-ray diffraction analyses S. 212
10.5.10 Electrode fabrication, cell assembly and electrochemical measurements S.213
10.6 Acknowledgments S. 214
10.7 Keywords S. 214
10.8 Supporting Information Chapter 10 S.215
11 Chiral Spirocyclic Germanium Thiolates – An Evaluation of Their Suitability for Twin Polymerization based on A Combined Experimental and Theoretical Study S.226
11.1 Abstract S.226
11.2 Introduction S. 226
11.3 Results and Discussion S.227
11.3.1 Syntheses and Characterization S. 227
11.3.2 Studies on twin polymerization S.229
11.3.3 Computational studies on proton-assisted twin polymerization S. 232
11.4 Conclusions S. 235
11.5 Acknowledgments S. 236
11.6 Keywords S.236
11.7 Supporting Information Chapter 11 S.237
12 Concluding remarks S. 257
12.1 Discussion S.257
12.1.1 Twin polymerization of germanium-containing precursors S. 257
12.1.2 Reactivity studies of precursors towards their twin polymerization S.260
12.2 Summary and Outlook S. 264
Selbständigkeitserklärung S.266
Curriculum Vitae S.267
Publications S. 268
List of Publications in Peer-Reviewed Journals S. 268
List of Conference Contributions S.269
Research proposals, additional conference and summer school participations S. 270
Acknowledgments S. 271
References S. 272
|
Page generated in 0.0898 seconds