Spelling suggestions: "subject:"mesures dde hausdorff."" "subject:"mesures dde haussdorff.""
1 |
Mouvements holomorphes, fonctions inf-harmoniques et dimension de HausdorffFuhrer, Aidan 09 November 2022 (has links)
L'attracteur de certains systèmes de fonctions itérées de similitudes dépendant de façon holomorphe d'un paramètre ainsi que l'ensemble de Julia de certaines familles holomorphes de polynômes hyperboliques sont mouvements holomorphes pour lesquels il a été montré que la réciproque de la dimension de Hausdorff peut s'écrire comme l'infimum d'une famille de fonctions harmoniques positives. Ces résultats motivent l'énonciation d'une conjecture concernant la variation de la dimension d'un mouvement holomorphe quelconque. Ce mémoire a pour objectif d'introduire les fonctions inf-harmoniques, d'étudier la littérature qui établit un lien entre ces dernières et les mouvements holomorphes et de dresser une piste de réponse à la conjecture.
|
2 |
Mouvements holomorphes, fonctions inf-harmoniques et dimension de HausdorffFuhrer, Aidan 11 November 2023 (has links)
L'attracteur de certains systèmes de fonctions itérées de similitudes dépendant de façon holomorphe d'un paramètre ainsi que l'ensemble de Julia de certaines familles holomorphes de polynômes hyperboliques sont mouvements holomorphes pour lesquels il a été montré que la réciproque de la dimension de Hausdorff peut s'écrire comme l'infimum d'une famille de fonctions harmoniques positives. Ces résultats motivent l'énonciation d'une conjecture concernant la variation de la dimension d'un mouvement holomorphe quelconque. Ce mémoire a pour objectif d'introduire les fonctions inf-harmoniques, d'étudier la littérature qui établit un lien entre ces dernières et les mouvements holomorphes et de dresser une piste de réponse à la conjecture.
|
3 |
Analyse de régularité locale, quelques applications à l'analyse multifractaleSeuret, Stéphane 05 November 2003 (has links) (PDF)
Il est fondamental, dans beaucoup de domaines (étude de la<br />turbulence , traitement du signal), mais également d'un point de vue théorique, de pouvoir détecter et caractériser les singularités d'une fonction ou d'une distribution. Pour mesurer la régularité autour d'un point $x_0$ d'une fonction $f$, on utilise souvent l'exposant ponctuel de \ho de $f$ en $x_0$, noté $\alp(x_0)$. Mais cet exposant n'est pas suffisant pour décrire entièrement les comportements locaux.<br /><br />L'exposant de \ho local, noté $\all(x_0)$, permet de compléter les<br />informations procurées par $\alp(x_0)$. Les relations entre les<br />fonctions $x\ra \all(x)$ et $x\ra\alp(x)$ sont complètement mises a<br />jour.<br /><br />Les espaces 2-microlocaux, notés $\css'$, permettent de généraliser la notion d'exposant de régularité. Une caractérisation temporelle des espaces $\css'$ pour les fonctions $C^\ep$ ($\ep>0$) est démontrée. Cela s'avère utile en traitement du signal, car accessible numériquement (FRACLAB).<br /><br />Les espaces $\css'$ permettent d'associer à un point non plus un ou<br />plusieurs exposants, mais une courbe dans $\R^2$ appelée frontière<br />2-microlocale. Cette dernière englobe les exposants cités plus<br />haut, et donne une description géométrique de la régularité<br />locale. On montre que la frontière 2-microlocale d'une distribution $f$ en $x_0$ est la transformée de Legendre d'une fonction $\chi_(x_0)$ appelée (\em spectre 2-microlocal): on parle du formalisme 2-microlocal. $\chi_(x_0)$ est lié au comportement des coefficients d'ondelettes de $f$ autour de $x_0$. L'étude de<br />$\chi_(x_0)$ et du formalisme 2-microlocal s'avère fructueuse: les<br />liens avec les exposants sont explicités, des propriétés<br />nouvelles de la régularité sont mises en évidence. Le calcul de<br />$\chi_(x_0)$ est effectué pour plusieurs fonctions classiques ou<br />originales.<br /><br />Deux applications du spectre 2-microlocal à l'analyse multifractale<br />sont présentées. Nous proposons la construction de fonctions et<br />processus multifractals. étant donnée une mesure de Borel positive<br />$\mu$ et deux réels positifs $s_0$ et $p_0$ vérifiant<br />$s_0-1/p_0>0$, on étudiera la fonction $F_\mu$ <br />$$F_\mu(x)=\sum_(j\geq 0) \sum_(k\in \mathbb(Z)) \pm<br />2^(-j(s_0-\frac(1)(p_0))) |\mu\big ([k2^(-j),(k+1)2^(-j))\big<br />)|^(\frac(1)(p_0)) \psijk(x).$$ Si $\mu$ satisfait un certain<br />formalisme multifractal (proche du formalisme usuel) pour les mesures, alors la fonction $F_\mu$ satisfait au formalisme multifractal pour les fonctions. Ce résultat s'applique aux grandes classes de mesures multifractales: quasi-Bernoulli, cascades de Mandelbrot, ... En particulier, on résout ainsi la conjecture de Arnéodo, Bacry, Muzy sur la valeur du spectre de leurs cascades aléatoires d'ondelettes, qui servaient de modèle à un fluide turbulent.<br /><br />Enfin la relation entre présence d'oscillations et validité du<br />formalisme multifractal est étudiée. Ce travail a une conséquence<br />inattendue: on montre qu'un seuillage effectué sur les coefficients<br />d'ondelettes peut créer des singularités oscillantes et faire<br />échouer le formalisme.
|
4 |
Mesures réduites, grandes solutions et singularités de quelques problèmes paraboliquesAl Sayed, Waad Veron, Laurent. January 2008 (has links) (PDF)
Thèse de doctorat : Mathématiques : Tours : 2008. / Titre provenant de l'écran-titre.
|
5 |
Généricité et prévalence des propriétés multifractales de traces de fonctionsMaman, Delphine 24 October 2013 (has links) (PDF)
L'analyse multifractale est l'étude des propriétés locales des ensembles de mesures ou de fonctions. Son importance est apparue dans le cadre de la turbulence pleinement développée. Dans ce cadre, l'expérimentateur n'a pas accès à la vitesse en tout point d'un fluide mais il peut mesurer sa valeur en un point en fonction du temps. On ne mesure donc pas directement la fonction vitesse du fluide, mais sa trace. Cette thèse sera essentiellement consacrée à l'étude du comportement local de traces de fonctions d'espaces de Besov : nous déterminerons la dimension de Hausdorff des ensembles de points ayant un exposant de Hölder donné (spectre multifractal). Afin de caractériser facilement l'exposant de Hölder et l'appartenance à un espace de Besov, on utilisera la décomposition de fonctions sur les bases d'ondelettes.Nous n'obtiendrons pas la valeur du spectre de la trace de toute fonction d'un espace de Besov mais sa valeur pour un ensemble générique de fonctions. On fera alors appel à deux notions de généricité différentes : la prévalence et la généricité au sens de Baire. Ces notions ne coïncident pas toujours, mais, ici on obtiendra les mêmes résultats. Dans la dernière partie, afin de déterminer la forme que peut prend un spectre multifractal, on construira une fonction qui est son propre spectre
|
6 |
Généricité et prévalence des propriétés multifractales de traces de fonctions / Genericity and prevalence of multifractal properties of traces of functionsMaman, Delphine 24 October 2013 (has links)
L'analyse multifractale est l'étude des propriétés locales des ensembles de mesures ou de fonctions. Son importance est apparue dans le cadre de la turbulence pleinement développée. Dans ce cadre, l'expérimentateur n'a pas accès à la vitesse en tout point d'un fluide mais il peut mesurer sa valeur en un point en fonction du temps. On ne mesure donc pas directement la fonction vitesse du fluide, mais sa trace. Cette thèse sera essentiellement consacrée à l'étude du comportement local de traces de fonctions d'espaces de Besov : nous déterminerons la dimension de Hausdorff des ensembles de points ayant un exposant de Hölder donné (spectre multifractal). Afin de caractériser facilement l'exposant de Hölder et l'appartenance à un espace de Besov, on utilisera la décomposition de fonctions sur les bases d'ondelettes.Nous n'obtiendrons pas la valeur du spectre de la trace de toute fonction d'un espace de Besov mais sa valeur pour un ensemble générique de fonctions. On fera alors appel à deux notions de généricité différentes : la prévalence et la généricité au sens de Baire. Ces notions ne coïncident pas toujours, mais, ici on obtiendra les mêmes résultats. Dans la dernière partie, afin de déterminer la forme que peut prend un spectre multifractal, on construira une fonction qui est son propre spectre / Multifractal analysis consists in the study of local properties of set of measures or functions. Its importance appeared in the frame of fully developed turbulence. In this area, physicists do not know the velocity of a fluid at all points but they can measure its value in one point in function of time. Hence, they do not measure the velocity function of the fluid but its trace.This thesis will be mainly dedicated to the study of local behavior of traces of Besov functions: we will determine the Hausdorff dimension of sets of points with a given Hölder exponent (the so-called multifractal spectrum). In order to easily characterize Hölder exponent and Besov spaces, we will use wavelet decomposition. We will not get the value of the multifractal spectrum of the trace of all functions of a Besov space, but its value for a generic set of functions. Then, we will use two notions of genericity : prevalence and Baire's genericity. Even if generic and prevalent properties can be different, here they will be the same.In the last part, in order to establish what a multifractal spectrum shape can be, we will construct a function which is its own spectrum
|
7 |
Propriétés d'ubiquité en analyse multifractale et séries aléatoires d'ondelettes à coefficients corrélésDurand, Arnaud 25 June 2007 (has links) (PDF)
L'objectif principal de cette thèse est la description des propriétés de taille et de grande intersection des ensembles apparaissant lors de l'analyse multifractale de certains processus stochastiques. Dans ce but, nous introduisons de nouvelles classes d'ensembles à grande intersection associées à des fonctions de jauge générales et nous prouvons, à l'aide de techniques d'ubiquité, des résultats d'appartenance à ces classes pour certains ensembles limsup. Cela nous permet en particulier de décrire exhaustivement les propriétés de taille et de grande intersection des ensembles issus de la théorie classique de l'approximation diophantienne comme l'ensemble des points bien approchables par des rationnels ou l'ensemble des nombres de Liouville. Nous fournissons aussi des résultats du même type lorsque les rationnels intervenant dans l'approximation doivent vérifier certaines conditions, comme les conditions de Besicovitch. Nos techniques d'ubiquité nous permettent en outre de décrire complètement les propriétés de taille et de grande intersection des ensembles intervenant dans l'analyse multifractale des processus de Lévy et d'un modèle de séries lacunaires d'ondelettes. Nous obtenons des résultats similaires pour un nouveau modèle de séries aléatoires d'ondelettes dont les coefficients sont corrélés via une chaîne de Markov indexée par un arbre. Nous déterminons en particulier la loi du spectre de singularités de ce modèle. Pour mener cette étude, nous nous intéressons à une large classe de fractals aléatoires généralisant les constructions récursives aléatoires précédemment introduites par de nombreux auteurs.
|
8 |
Information on a default time : Brownian bridges on a stochastic intervals and enlargement of filtrations / Information sur le temps de défaut : ponts browniens sur des intervalles stochastiques et grossissement de filtrationsBedini, Matteo 12 October 2012 (has links)
Dans ce travail de thèse le processus d'information concernant un instant de défaut τ dans un modèle de risque de crédit est décrit par un pont brownien sur l'intervalle stochastique [0, τ]. Un tel processus de pont est caractérisé comme plus adapté dans la modélisation que le modèle classique considérant l'indicatrice I[0,τ]. Après l'étude des formules de Bayes associées, cette approche de modélisation de l'information concernant le temps de défaut est reliée avec d'autres informations sur le marché financier. Ceci est fait à l'aide de la théorie du grossissement de filtration, où la filtration générée par le processus d'information est élargie par la filtration de référence décrivant d'autres informations n'étant pas directement liées avec le défaut. Une attention particulière est consacrée à la classification du temps de défaut par rapport à la filtration minimale mais également à la filtration élargie. Des conditions suffisantes, sous lesquelles τ est totalement inaccessible, sont discutées, mais également un exemple est donné dans lequel τ évite les temps d'arrêt, est totalement inaccessible par rapport à la filtration minimale et prévisible par rapport à la filtration élargie. Enfin, des contrats financiers comme, par exemple, des obligations privée et des crédits default swaps, sont étudiés dans le contexte décrit ci-dessus. / In this PhD thesis the information process concerning a default time τ in a credit risk model is described by a Brownian bridge over the random time interval [0, τ]. Such a bridge process is characterised as to be a more adapted model than the classical one considering the indicator function I[0,τ]. After the study of related Bayes formulas, this approach of modelling information concerning the default time is related with other financial information. This is done with the help of the theory of enlargement of filtration, where the filtration generated by the information process is enlarged with a reference filtration modelling other information not directly associated with the default. A particular attention is paid to the classification of the default time with respect to the minimal filtration but also with respect to the enlarged filtration. Sufficient conditions under which τ is totally inaccessible are discussed, but also an example is given of a τ avoiding the stopping times of the reference filtration, which is totally inaccessible with respect to its own filtration and predictable with respect to the enlarged filtration. Finally, common financial contracts like defaultable bonds and credit default swaps are considered in the above described settings.
|
Page generated in 0.1872 seconds