• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 24
  • 3
  • 3
  • 1
  • 1
  • Tagged with
  • 38
  • 38
  • 9
  • 8
  • 8
  • 7
  • 7
  • 7
  • 7
  • 6
  • 6
  • 6
  • 6
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Dynamics of the plant mitochondrial proteome : towards the understanding of metabolic networks

Lee, Alex Chun Pong January 2009 (has links)
[Truncated abstract] The mitochondrion is the energy powerhouse that provide energy to many metabolic functions in the form of ATP. Mitochondria in plants are also known to carry out a variety of other important biochemical processes within the cell, including the anaplerotic function of tricarboxylic acid (TCA) cycle, one-carbon metabolism and portions of photorespiration. Dynamics of the mitochondrial proteome in plants underlies fundamental differences in the roles of these organelles under different developmental and environmental conditions. A quantitative comparative proteomic approach was carried out to analyze mitochondria isolated from non-photosynthetic models, cell culture and root, and compared them to mitochondria isolated from photosynthetic shoots. The glycinedependent respiration rate and the protein abundance of the photorespiratory apparatus was found to be higher in shoot than cell culture and root mitochondria. Also, there were major differences in the abundance and/or activities of enzymes in the TCA cycle between the three systems examined. The metabolic pathways that relied on the supply of intermediates from TCA cycle and photorespiration were also altered, namely cysteine, formate and one-carbon metabolism, as well as amino acid metabolism focused on 2-oxoglutarate generation, and branched-chain amino acids degradation. To further provide insight into the extent of mitochondrial heterogeneity in plants, mitochondria isolated from six organ/cell types, leaf, root, cell culture, flower, stem and silique were analyzed. Of the 251 protein spots on a 2D-gel of the mitochondrial soluble/matrix fraction, the abundance of 213 spots were significantly varied between different samples. Identification of these spots revealed a non-redundant set of 79 proteins which were differentially expressed between organ/cell types. ... Importantly, posttranslational modifications played a significant role in the dynamics of the leaf mitochondrial proteome during the diurnal cycle. Overall, these findings indicated that the mitochondrial proteome is dynamic in order to fulfil different functional and physiological requirements in response to organspecific growth and changes in the external environments. These results also indicated that the majority of the changes in the mitochondrial proteome occurred in the matrix and suggested differences in substrate choice/availability in various plant organs and during the diurnal cycle. Further, these analyses demonstrate that, while mitochondrial proteins are regulated transcriptionally by the nucleus, post-transcriptional regulation and/or post-translational modifications play a vital role in modulating the activation state and/or regulation of proteins in key biochemical pathways in plant mitochondria. The integration of proteomics data with respiratory measurements, enzyme assays and transcript datasets will allow the identification of organ-enhanced and/or light/darkresponsive metabolic pathways as well as providing potential targets for reverse genetic approaches for further functional analysis of plant mitochondria.
22

Computational Studies on the Evolution of Metabolism

Ullrich, Alexander 10 October 2011 (has links)
Living organisms throughout evolution have developed desired properties, such as the ability of maintaining functionality despite changes in the environment or their inner structure, the formation of functional modules, from metabolic pathways to organs, and most essentially the capacity to adapt and evolve in a process called natural selection. It can be observed in the metabolic networks of modern organisms that many key pathways such as the citric acid cycle, glycolysis, or the biosynthesis of most amino acids are common to all of them. Understanding the evolutionary mechanisms behind this development of complex biological systems is an intriguing and important task of current research in biology as well as artificial life. Several competing hypotheses for the formation of metabolic pathways and the mecha- nisms that shape metabolic networks have been discussed in the literature, each of which finds support from comparative analysis of extant genomes. However, while being powerful tools for the investigation of metabolic evolution, these traditional methods do not allow to look back in evolution far enough to the time when metabolism had to emerge and evolve to the form we can observe today. To this end, simulation studies have been introduced to discover the principles of metabolic evolution and the sources for the emergence of metabolism prop- erties. These approaches differ considerably in the realism and explicitness of the underlying models. A difficult trade-off between realism and computational feasibility has to be made and further modeling decisions on many scales have to be taken into account, requiring the combination of knowledge from different fields such as chemistry, physics, biology and last but not least also computer science. In this thesis, a novel computational model for the in silico evolution of early metabolism is introduced. It comprises all the components on different scales to resemble a situation of evolving metabolic protocells in an RNA-world. Therefore, the model contains a minimal RNA-based genetics and an evolving metabolism of catalytic ribozymes that manipulate a rich underlying chemistry. To allow the metabolic organization to escape from the confines of the chemical space set by the initial conditions of the simulation and in general an open- ended evolution, an evolvable sequence-to-function map is used. At the heart of the metabolic subsystem is a graph-based artificial chemistry equipped with a built-in thermodynamics. The generation of the metabolic reaction network is realized as a rule-based stochastic simulation. The necessary reaction rates are calculated from the chemical graphs of the reactants on the fly. The selection procedure among the population of protocells is based on the optimal metabolic yield of the protocells, which is computed using flux balance analysis. The introduced computational model allows for profound investigations of the evolution of early metabolism and the underlying evolutionary mechanisms. One application in this thesis is the study of the formation of metabolic pathways. Therefore, four established hypothe- ses, namely the backwards evolution, forward evolution, patchwork evolution and the shell hypothesis, are discussed within the realms of this in silico evolution study. The metabolic pathways of the networks, evolved in various simulation runs, are determined and analyzed in terms of their evolutionary direction. The simulation results suggest that the seemingly mutually exclusive hypotheses may well be compatible when considering that different pro- cesses dominate different phases in the evolution of a metabolic system. Further, it is found that forward evolution shapes the metabolic network in the very early steps of evolution. In later and more complex stages, enzyme recruitment supersedes forward evolution, keeping a core set of pathways from the early phase. Backward evolution can only be observed under conditions of steady environmental change. Additionally, evolutionary history of enzymes and metabolites were studied on the network level as well as for single instances, showing a great variety of evolutionary mechanisms at work. The second major focus of the in silico evolutionary study is the emergence of complex system properties, such as robustness and modularity. To this end several techniques to analyze the metabolic systems were used. The measures for complex properties stem from the fields of graph theory, steady state analysis and neutral network theory. Some are used in general network analysis and others were developed specifically for the purpose introduced in this work. To discover potential sources for the emergence of system properties, three different evolutionary scenarios were tested and compared. The first two scenarios are the same as for the first part of the investigation, one scenario of evolution under static conditions and one incorporating a steady change in the set of ”food” molecules. A third scenario was added that also simulates a static evolution but with an increased mutation rate and regular events of horizontal gene transfer between protocells of the population. The comparison of all three scenarios with real world metabolic networks shows a significant similarity in structure and properties. Among the three scenarios, the two static evolutions yield the most robust metabolic networks, however, the networks evolved under environmental change exhibit their own strategy to a robustness more suited to their conditions. As expected from theory, horizontal gene transfer and changes in the environment seem to produce higher degrees of modularity in metabolism. Both scenarios develop rather different kinds of modularity, while horizontal gene transfer provides for more isolated modules, the modules of the second scenario are far more interconnected.
23

An Integrative Genome-Based Metabolic Network Map of Saccharomyces Cerevisiae on Cytoscape: Toward Developing A Comprehensive Model

Hamidi, Aram 03 1900 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Metabolic flux analyses and their more comprehensive forms, genome-scale metabolic networks (GSMNs), have gained tremendous attention in industrial and medical research. Saccharomyces cerevisiae (S. cerevisiae) is one of the organisms that has had its GSMN subjected to multiple frequent updates. The objective of this study is to develop a visualization tool for the GSMN of S. cerevisiae for educational and research purposes. This visualization tool is called the Master Metabolic Map of Saccharomyces cerevisiae (MMMSC). In this study, a metabolic database of S. cerevisiae developed by us was transferred to Cytoscape, a useful and efficient bioinformatics software platform for visualizing molecular networks. After the MMMSC was created, nodes, representing metabolites and enzymes, and edges, representing the chemical reactions that connect the nodes, were curated manually to develop a metabolic visualization map of the whole metabolic system of S. cerevisiae (Figure 4). In the discussion, examples are provided regarding possible applications of MMMSC to predict possible effects of the manipulation of the S. cerevisiae metabolome for industrial and medical purposes. Ultimately, it is concluded that further work is needed to complete the metabolic database of S. cerevisiae and the related MMMSC. In future studies, these tools may be integrated with other omics and other approaches, especially the directed-evolution approach, to increase cost and time efficiency of future research and to find solutions for complex and, thus far, poorly managed environmental and health problems.
24

The Influence of the Insulin-Like Gene Family and Diet-Drug Interactions on Caenorhabditis elegans Physiology: A Dissertation

Ritter, Ashlyn D. 10 August 2015 (has links)
Aging can be defined as the accumulation of changes affecting the maintenance of homeostatic processes over time, leading to functional decline and increased risk for disease and death. In its simplicity, aging is the systemwide deterioration of an organism. Genetic studies have identified many potential molecular mechanisms of aging including DNA damage, telomere shortening, mitochondrial dysfunction, increased oxidative stress, uncontrolled inflammation, and hormone dysregulation (reviewed in [1]). However, in reality, aging is likely to be a combination of some (or potentially all) of these mechanisms. Interestingly, aging and metabolism are tightly coordinated. Aging is a major contributor to metabolic decline and related diseases, including type 2 diabetes, metabolic syndrome, and cancer. One of the best characterized metabolic pathways implicated in aging is the insulin/IGF-1 signaling (IIS) pathway. Downstream signaling components of the IIS pathway receptor have been well studied and include an interconnected network of signaling events that regulate many physiological outputs. However, less is known about the role of upstream signaling components and how intracellular pathways and physiology are regulated accordingly. In Part I, I present my work towards understanding upstream IIS pathway components using a systems biology approach. The goal of this study is to gain insight into the redundancy and specificity of the insulin gene family responsible for initiating IIS pathway activity in Caenorhabditis elegans. The information gained will serve as a foundation for future studies dissecting the molecular mechanisms of this pathway in efforts to uncouple the downstream signaling and physiological outputs. The clear impact of metabolism on aging and disease stimulated questions regarding the potential of promoting health and longevity through diet and dietary mimetics. Recent findings indicate reduced food intake, meal timing and nutritional modulation of the gut microbiome can ameliorate signs of aging and age-associated diseases. Aging, therefore, is also the result of dynamic and complex interplay between genes of an organism and its environment. In Part II, I will discuss my efforts to gain insight into how diet influences aging. This preliminary study has demonstrated that diet can affect lifespan in the model organism, C. elegans. Additionally, we observe diet-specific effects on drug efficacy that, in turn, modulates C. elegans lifespan and reproduction. The implications of these experiments, while limited, illustrate a potentially greater role in diet- and drug-mediated effects on lifespan.
25

Chemometric Approaches for Systems Biology

Folch Fortuny, Abel 23 January 2017 (has links)
The present Ph.D. thesis is devoted to study, develop and apply approaches commonly used in chemometrics to the emerging field of systems biology. Existing procedures and new methods are applied to solve research and industrial questions in different multidisciplinary teams. The methodologies developed in this document will enrich the plethora of procedures employed within omic sciences to understand biological organisms and will improve processes in biotechnological industries integrating biological knowledge at different levels and exploiting the software packages derived from the thesis. This dissertation is structured in four parts. The first block describes the framework in which the contributions presented here are based. The objectives of the two research projects related to this thesis are highlighted and the specific topics addressed in this document via conference presentations and research articles are introduced. A comprehensive description of omic sciences and their relationships within the systems biology paradigm is given in this part, jointly with a review of the most applied multivariate methods in chemometrics, on which the novel approaches proposed here are founded. The second part addresses many problems of data understanding within metabolomics, fluxomics, proteomics and genomics. Different alternatives are proposed in this block to understand flux data in steady state conditions. Some are based on applications of multivariate methods previously applied in other chemometrics areas. Others are novel approaches based on a bilinear decomposition using elemental metabolic pathways, from which a GNU licensed toolbox is made freely available for the scientific community. As well, a framework for metabolic data understanding is proposed for non-steady state data, using the same bilinear decomposition proposed for steady state data, but modelling the dynamics of the experiments using novel two and three-way data analysis procedures. Also, the relationships between different omic levels are assessed in this part integrating different sources of information of plant viruses in data fusion models. Finally, an example of interaction between organisms, oranges and fungi, is studied via multivariate image analysis techniques, with future application in food industries. The third block of this thesis is a thoroughly study of different missing data problems related to chemometrics, systems biology and industrial bioprocesses. In the theoretical chapters of this part, new algorithms to obtain multivariate exploratory and regression models in the presence of missing data are proposed, which serve also as preprocessing steps of any other methodology used by practitioners. Regarding applications, this block explores the reconstruction of networks in omic sciences when missing and faulty measurements appear in databases, and how calibration models between near infrared instruments can be transferred, avoiding costs and time-consuming full recalibrations in bioindustries and research laboratories. Finally, another software package, including a graphical user interface, is made freely available for missing data imputation purposes. The last part discusses the relevance of this dissertation for research and biotechnology, including proposals deserving future research. / Esta tesis doctoral se centra en el estudio, desarrollo y aplicación de técnicas quimiométricas en el emergente campo de la biología de sistemas. Procedimientos comúnmente utilizados y métodos nuevos se aplican para resolver preguntas de investigación en distintos equipos multidisciplinares, tanto del ámbito académico como del industrial. Las metodologías desarrolladas en este documento enriquecen la plétora de técnicas utilizadas en las ciencias ómicas para entender el funcionamiento de organismos biológicos y mejoran los procesos en la industria biotecnológica, integrando conocimiento biológico a diferentes niveles y explotando los paquetes de software derivados de esta tesis. Esta disertación se estructura en cuatro partes. El primer bloque describe el marco en el cual se articulan las contribuciones aquí presentadas. En él se esbozan los objetivos de los dos proyectos de investigación relacionados con esta tesis. Asimismo, se introducen los temas específicos desarrollados en este documento mediante presentaciones en conferencias y artículos de investigación. En esta parte figura una descripción exhaustiva de las ciencias ómicas y sus interrelaciones en el paradigma de la biología de sistemas, junto con una revisión de los métodos multivariantes más aplicados en quimiometría, que suponen las pilares sobre los que se asientan los nuevos procedimientos aquí propuestos. La segunda parte se centra en resolver problemas dentro de metabolómica, fluxómica, proteómica y genómica a partir del análisis de datos. Para ello se proponen varias alternativas para comprender a grandes rasgos los datos de flujos metabólicos en estado estacionario. Algunas de ellas están basadas en la aplicación de métodos multivariantes propuestos con anterioridad, mientras que otras son técnicas nuevas basadas en descomposiciones bilineales utilizando rutas metabólicas elementales. A partir de éstas se ha desarrollado software de libre acceso para la comunidad científica. A su vez, en esta tesis se propone un marco para analizar datos metabólicos en estado no estacionario. Para ello se adapta el enfoque tradicional para sistemas en estado estacionario, modelando las dinámicas de los experimentos empleando análisis de datos de dos y tres vías. En esta parte de la tesis también se establecen relaciones entre los distintos niveles ómicos, integrando diferentes fuentes de información en modelos de fusión de datos. Finalmente, se estudia la interacción entre organismos, como naranjas y hongos, mediante el análisis multivariante de imágenes, con futuras aplicaciones a la industria alimentaria. El tercer bloque de esta tesis representa un estudio a fondo de diferentes problemas relacionados con datos faltantes en quimiometría, biología de sistemas y en la industria de bioprocesos. En los capítulos más teóricos de esta parte, se proponen nuevos algoritmos para ajustar modelos multivariantes, tanto exploratorios como de regresión, en presencia de datos faltantes. Estos algoritmos sirven además como estrategias de preprocesado de los datos antes del uso de cualquier otro método. Respecto a las aplicaciones, en este bloque se explora la reconstrucción de redes en ciencias ómicas cuando aparecen valores faltantes o atípicos en las bases de datos. Una segunda aplicación de esta parte es la transferencia de modelos de calibración entre instrumentos de infrarrojo cercano, evitando así costosas re-calibraciones en bioindustrias y laboratorios de investigación. Finalmente, se propone un paquete software que incluye una interfaz amigable, disponible de forma gratuita para imputación de datos faltantes. En la última parte, se discuten los aspectos más relevantes de esta tesis para la investigación y la biotecnología, incluyendo líneas futuras de trabajo. / Aquesta tesi doctoral es centra en l'estudi, desenvolupament, i aplicació de tècniques quimiomètriques en l'emergent camp de la biologia de sistemes. Procediments comúnment utilizats i mètodes nous s'apliquen per a resoldre preguntes d'investigació en diferents equips multidisciplinars, tant en l'àmbit acadèmic com en l'industrial. Les metodologies desenvolupades en aquest document enriquixen la plétora de tècniques utilitzades en les ciències òmiques per a entendre el funcionament d'organismes biològics i milloren els processos en la indústria biotecnològica, integrant coneixement biològic a distints nivells i explotant els paquets de software derivats d'aquesta tesi. Aquesta dissertació s'estructura en quatre parts. El primer bloc descriu el marc en el qual s'articulen les contribucions ací presentades. En ell s'esbossen els objectius dels dos projectes d'investigació relacionats amb aquesta tesi. Així mateix, s'introduixen els temes específics desenvolupats en aquest document mitjançant presentacions en conferències i articles d'investigació. En aquesta part figura una descripació exhaustiva de les ciències òmiques i les seues interrelacions en el paradigma de la biologia de sistemes, junt amb una revisió dels mètodes multivariants més aplicats en quimiometria, que supossen els pilars sobre els quals s'assenten els nous procediments ací proposats. La segona part es centra en resoldre problemes dins de la metabolòmica, fluxòmica, proteòmica i genòmica a partir de l'anàlisi de dades. Per a això es proposen diverses alternatives per a compendre a grans trets les dades de fluxos metabòlics en estat estacionari. Algunes d'elles estàn basades en l'aplicació de mètodes multivariants propostos amb anterioritat, mentre que altres són tècniques noves basades en descomposicions bilineals utilizant rutes metabòliques elementals. A partir d'aquestes s'ha desenvolupat software de lliure accés per a la comunitat científica. Al seu torn, en aquesta tesi es proposa un marc per a analitzar dades metabòliques en estat no estacionari. Per a això s'adapta l'enfocament tradicional per a sistemes en estat estacionari, modelant les dinàmiques dels experiments utilizant anàlisi de dades de dues i tres vies. En aquesta part de la tesi també s'establixen relacions entre els distints nivells òmics, integrant diferents fonts d'informació en models de fusió de dades. Finalment, s'estudia la interacció entre organismes, com taronges i fongs, mitjançant l'anàlisi multivariant d'imatges, amb futures aplicacions a la indústria alimentària. El tercer bloc d'aquesta tesi representa un estudi a fons de diferents problemes relacionats amb dades faltants en quimiometria, biologia de sistemes i en la indústria de bioprocessos. En els capítols més teòrics d'aquesta part, es proposen nous algoritmes per a ajustar models multivariants, tant exploratoris com de regressió, en presencia de dades faltants. Aquests algoritmes servixen ademés com a estratègies de preprocessat de dades abans de l'ús de qualsevol altre mètode. Respecte a les aplicacions, en aquest bloc s'explora la reconstrucció de xarxes en ciències òmiques quan apareixen valors faltants o atípics en les bases de dades. Una segona aplicació d'aquesta part es la transferència de models de calibració entre instruments d'infrarroig proper, evitant així costoses re-calibracions en bioindústries i laboratoris d'investigació. Finalment, es proposa un paquet software que inclou una interfície amigable, disponible de forma gratuïta per a imputació de dades faltants. En l'última part, es discutixen els aspectes més rellevants d'aquesta tesi per a la investigació i la biotecnologia, incloent línies futures de treball. / Folch Fortuny, A. (2016). Chemometric Approaches for Systems Biology [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/77148 / Premios Extraordinarios de tesis doctorales
26

Parametrising kinetic models of biological networks

Borger, Simon 03 December 2009 (has links)
Systembiologie strebt danach, biologische Netzwerke dynamisch zu modellieren. Zwei Erfordernisse sind zuhierfür erfüllen. Erstens müssen die Interaktionsnetzwerke bekannt sein. Zweitens muss die Dynamik einerjeden Interaktion aufgedeckt werden. Die Dynamik von Interaktionen werden durch Ratengleichungen beschrieben unter Verwendung von Kinetiken. Diese Kinetiken beschreiben den Interaktionsmechanismus. Für jede einzelne Interaktion des Netzwerkes sind die Parameter durch das Experiment zu bestimmt. Für enzymkatalysierte Reaktionen zum Beispiel werden Messungen durchgeführt, in welchen der Verbrauch des Substrates aufgezeichnet wird. Für viele Enzyme jedoch sind weder der Mechanismus geschweige denn die Parameter bekannt. Und vorhandene Daten sind gewöhnlich von mangelhafter Qualität. Nach einer Einführung in die kinetische Modellierung metabolischer Netzwerke betrachten wir ein veröffentlichtes künstliches genetisches Netzwerk, das entweder einem stationären Zustand zustrebt oder in Abhängigkeit eines kritschen Parameters in einen dauerhaften Schwingungszustand übergeht. Dieser kritsche Parameter ist der Hillkoeffizient in der Wechselwirkung zwischen einem Gen und dem anderen. Für verschiedene Parameterwahlen untersuchen wir, bei welchemWert des Hillkoeffizienten eine Bifurkation auftritt. Auf diese Weise ermitteln wir die Verteilung des kritschen Parameters, der nicht analytisch berechnet werden kann. Wir fahren dann fort und untersuchen nützliche Datenquellen für die Parametrisierung von kinetischen Modellen metabolischer Netzwerke und sammelnsie in einer elektronischen Ressource, um sie auf elektronischem Wege zugänglich und nutzbar zu machen. Dies erfordert, Standardreferenzen zu wählen für die Benennung der Komponenten biologischer Netzwerke. Schließlich beschreiben wir einen Arbeitsablauf, während desselben die Datenbank verwendet wird zur Parametrisierung von kinetischen Modellen metabolischer Netzwerke. / Systems biology seeks to model biological networks dynamically. Two requirements need to be fulfilled for this to be possible. First, the interaction networks need to be known. Second, the dynamics of the interactions have to be revealed. Dynamics of interactions are described by rate laws using kinetics. These kinetics describe the interaction mechanism. For each single interaction occurring in a biological networkparameters have to specified. They have to be measured by experiments. For enzyme catalysed reactions, for example, the parameters are measured by enzyme assays tracking the consumption of substrate. For many enzymes parameters and kinetic mechanism are not known. And existing data for parameters generally are ofpoor quality. After introducing kinetic modelling of metabolic networks we consider a published artificial genetic network that can either tend to a steady state or exhibit sustained oscillations depending on a critical parameter. This critical parameter is the Hill coefficient in the interaction from one gene with the other. For different parameter settings we examine at what value of the Hill coefficient a bifurcation occurs. At this point the network begins to oscillate. We thus assess the distribution of the critical values, a property that cannot be calculated analytically. We then go on to consider useful data sources for parmetrisation of kinetic models of metabolic networks and collect them in an electronical resource to make them electronically accessible and usable. This requires choosing standard references for the designation of components of biological networks. Finally we describe a workflow in which this data resource is used for automatic parametrisation of kinetic models of metabolic networks.
27

Structural analysis of metabolic networks

Ebenhöh, Oliver 01 April 2003 (has links)
In der vorliegenden Arbeit werden zwei Modelle zur strukturellen Analyse von Stoffwechselsystemen vorgestellt. Die Untersuchung basiert auf der Hypothese, dass heutzutage vorzufindende Stoffwechselsysteme als Ergebnis einer evolutionären Entwicklung, bestimmt durch Mutationsmechanismen und natürlicher Selektion, angesehen werden können. Es kann daher angenommen werden, dass kinetische Parameter sowie strukturelle Eigenschaften im Laufe der Evolution solche Werte angenommen haben, die eine gewisse Optimalität bezüglich ihrer biologischen Funktion darstellen. Das erste Modell untersucht das strukturelle Design ATP und NADH produzierender Systeme, so wie die Glykolyse und der Zitratzyklus. Eine Methode wird präsentiert, die die Beschreibung hypothetischer, chemisch denkbarer, alternativer Stoffwechselwege ermöglicht. Diese Wege werden bezüglich ihrer Effizienz, ATP zu produzieren, untersucht. Es stellt sich heraus, dass die meisten möglichen Wege eine niedrige ATP-Produktionsrate aufweisen und dass die effizientesten Wege einige strukturelle Gemeinsamkeiten besitzen. Die Optimierung bezüglich der ATP-Produktionsrate wird mit einem evolutionären Algorithmus durchgeführt. Folgende Resultate stehen mit dem tatsächlichen Design der Glykolyse und des Zitratzyklus in Einklang: (i) In allen effizienten Wegen befinden sich die ATP-verbrauchenden Reaktionen am Anfang. (ii) In allen effizienten Wegen befinden sich die sowohl die NADH- als auch die ATP-produzierenden Reaktionen am Ende. (iii) Die Anzahl der NADH-Moleküle, die aus einem energiereichen Molekül (Glukose) produziert werden, beläuft sich in allen effizienten Wegen auf vier. Im zweiten Modell werden vollständige Mengen metabolischer Netzwerke konstruiert, wobei von Reaktionen ausgegangen wird, die Änderungen des Kohlenstoffskeletts der beteiligten Metabolite beschreiben. Elementare Netzwerke werden dadurch definiert, dass eine bestimmte chemische Umwandlung durchgeführt werden kann und dass diese Fähigkeit verloren geht, wenn eine der beteiligten Reaktionen ausgeschlossen wird. Übergänge zwischen Netzwerken und Mutationen werden durch den Austausch einer einzigen Reaktion definiert. Es existieren verschiedene Mutationen, solche bei denen Funktionen verloren gehen, welche dazugewonnen werden, und neutrale Mutationen. Mutationen definieren Nachbarschaftsrelationen, die graphentheoretisch beschrieben werden. Eigenschaften wie Durchmesser, Konnektivität und die Abstandsverteilung der Vertizes werden berechnet. Ein Konzept zur Quantifizierung der Robustheit von Netzwerken gegenüber stöchiometrischen Veränderungen wird entwickelt, wobei zwischen starker und schwacher Robustheit unterschieden wird. Evolutionäre Algorithmen werden angewandt, um die Entwicklung von Netzwerkpopulationen unter konstanten und zeitlich veränderlichen Umweltbedingungen zu untersuchen. Es wird gezeigt, dass Populationen sich zu Gruppierungen von Netzwerken hinentwickeln, die gemeinsame Funktionen besitzen und nah benachbart sind. Unter zeitlich veränderlichen Umweltbedingungen zeigt sich, dass multifunktionelle Netzwerke optimal sind und sich im Selektionsprozess durchsetzen. / In the present thesis two models are presented which study the structural design of metabolic systems. The investigation is based on the hypothesis that present day metabolic systems are the result of an evolutionary development governed by mutation mechanisms and natural selection principles. Therefore, it can be assumed that these parameters have reached, during the course of their evolution, values which imply certain optimal properties with respect to their biological function. The first model concerns the structural design of ATP and NADH producing systems such as glycolysis and the citric acid cycle. A method is presented to describe hypothetical, chemically feasible, alternative pathways. We analyse these pathways with respect to their capability to efficiently produce ATP. It is shown that most of the possible pathways result in a very low ATP production rate and that the very efficient pathways share common structural properties. Optimisation with respect to the ATP production rate is performed by an evolutionary algorithm. The following results of our analysis are in close correspondence to the real design of glycolysis and the TCA cycle: (i) In all efficient pathways the ATP consuming reactions are located near the beginning. (ii) In all efficient pathways NADH producing reactions as well as ATP producing reactions are located near the end. (iii) The number of NADH molecules produced by the consumption of one energy-rich molecule (glucose) amounts to four in all efficient pathways. In the second model complete sets of metabolic networks are constructed starting from a limited set of reactions describing changes in the carbon skeleton of biochemical compounds. Elementary networks are defined by the condition that a specific chemical conversion can be performed by a set of given reactions and that this ability will be lost by elimination of any of these reactions. Transitions between networks and mutations of networks are defined by exchanges of single reactions. Different mutations exist such as gain or loss of function mutations and neutral mutations. Based on these mutations neighbourhood relations between networks are established which are described in a graph theoretical way. Basic properties of these graphs are determined such as diameter, connectedness, distance distribution of pairs of vertices. A concept is developed to quantify the robustness of networks against changes in their stoichiometry where we distinguish between strong and weak robustness. Evolutionary algorithms are applied to study the development of network populations under constant and time dependent environmental conditions. It is shown that the populations evolve toward clusters of networks performing a common function and which are closely neighboured. Under changing environmental conditions multifunctional networks prove to be optimal and will be selected.
28

Investigating host-microbiota cooperation with gap-filling optimization problems / Étude de la coopération hôte-microbiote par des problèmes d'optimisation basés sur la complétion de réseaux métaboliques

Frioux, Clémence 19 November 2018 (has links)
La biologie des systèmes intègre données et connaissances par des méthodes bioinformatiques, afin de mieux appréhender la physiologie des organismes. Une problématique est l’applicabilité de ces techniques aux organismes non modèles, au centre de plus en plus d’études, grâce aux avancées de séquençage et à l’intérêt croissant de la recherche sur les microbiotes. Cette thèse s’intéresse à la modélisation du métabolisme par des réseaux, et de sa fonctionnalité par diverses sémantiques basées sur les graphes et les contraintes stoechiométriques. Une première partie présente des travaux sur la complétion de réseaux métaboliques pour les organismes non modèles. Une méthode basée sur les graphes est validée, et une seconde, hybride, est développée, en programmation par ensembles réponses (ASP). Ces complétions sont appliquées à des réseaux métaboliques d’algues en biologie marine, et étendues à la recherche de complémentarité métabolique entre Ectocarpus siliculosus et une bactérie symbiotique. En s’appuyant sur les méthodes de complétion, la seconde partie de la thèse vise à proposer et implémenter une sélection de communautés à l’échelle de grands microbiotes. Une approche en deux étapes permet de suggérer des symbiotes pour l’optimisation d’un objectif donné. Elle supporte la modélisation des échanges et couvre tout l’espace des solutions. Des applications sur le microbiote intestinal humain et la sélection de bactéries pour une algue brune sont présentées. Dans l’ensemble, cette thèse propose de modéliser, développer et appliquer des méthodes reposant sur des sémantiques de graphe pour élaborer des hypothèses sur le métabolisme des organismes. / Systems biology relies on computational biology to integrate knowledge and data, for a better understanding of organisms’ physiology. Challenges reside in the applicability of methods and tools to non-model organisms, for instance in marine biology. Sequencing advances and the growing importance of elucidating microbiotas’ roles, have led to an increased interest into these organisms. This thesis focuses on the modeling of the metabolism through networks, and of its functionality using graphs and constraints semantics. In particular, a first part presents work on gap-filling metabolic networks in the context of non-model organisms. A graph-based method is benchmarked and validated and a hybrid one is developed using Answer Set Programming (ASP) and linear programming. Such gap-filling is applied on algae and extended to decipher putative interactions between Ectocarpus siliculosus and a symbiotic bacterium. In this direction, the second part of the thesis aims at proposing formalisms and implementation of a tool for selecting and screening communities of interest within microbiotas. It enables to scale to large microbiotas and, with a two-step approach, to suggest symbionts that fit the desired objective. The modeling supports the computation of exchanges, and solving can cover the whole solution space. Applications are presented on the human gut microbiota and the selection of bacterial communities for a brown alga. Altogether, this thesis proposes modeling, software and biological applications using graph-based semantics to support the elaboration of hypotheses for elucidating the metabolism of organisms.
29

Analysis of Prokaryotic Metabolic Networks

Urquhart, Caroline 30 March 2011 (has links)
Establishing group structure in complex networks is potentially very useful since nodes belonging to the same module can often be related by commonalities in their biological function. However, module detection in complex networks poses a challenging problem and has sparked a great deal of interest in various disciplines in recent years [5]. In real networks, which can be quite complex, we have no idea about the true number of modules that exist. Furthermore, the structure of the modules may be hierarchical meaning they may be further divided into sub-modules and so forth. Many attempts have been made to deal with these problems and because the involved methods vary considerably they have been difficult to compare [5]. The objectives of this thesis are (i) to create and implement a new algorithm that will identify modules in complex networks and reconstruct the network in such a way so as to maximize modularity, (ii) to evaluate the performance of a new method, and compare it to a popular method based on a simulated annealing algorithm, and (iii) to apply the new method, and a comparator method, to analyze the metabolic network of the bacterial genus Listeria, an important pathogen in both agricultural and human clinical settings.
30

Bioinformatic study of the metabolic dialog between a non-pathogenic trypanosomatid and its endosymbiont with evolutionary and functional goals

Coimbra Klein, Cecilia 12 November 2013 (has links) (PDF)
In this thesis, we presented three main types of analyses of metabolism, most of which involved symbiosis: metabolic dialogue between a trypanosomatid and its symbiont, comparative analyses of metabolic networks and exploration of metabolomics data. All of them were essentially based on genomics data where metabolic capabilities were predicted from the annotated genes of the target organism, and were further refined with other types of data depending on the aim and scope of each investigation. The metabolic dialogue between a trypanosomatid and its symbiont was explored with functional and evolutionary goals which included analysing the classically defined pathways for the synthesis of essential amino acids and vitamins, exploring the genome-scale metabolic networks and searching for potential horizontal gene transfers from bacteria to the trypanosomatids. The comparative analyses performed focused on the common metabolic capabilities of different lifestyle groups of bacteria and we proposed a method to automatically establish the common and the group-specific activities. The application of our method on metabolic stories enumeration to the yeast response to cadmium exposure was a validation of this approach on a well-studied biological response to stress. We showed that the method captured well the underlying knowledge as it extracted stories allowing for further interpretations of the metabolomics data mapped into the genome-scale metabolic model of yeast

Page generated in 0.0675 seconds