• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 138
  • 19
  • 17
  • 8
  • 4
  • 4
  • 3
  • 1
  • 1
  • 1
  • Tagged with
  • 264
  • 264
  • 264
  • 66
  • 64
  • 64
  • 49
  • 37
  • 35
  • 34
  • 33
  • 29
  • 27
  • 26
  • 26
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
91

Template-Directed Synthesis and Post-Synthetic Modification of Porphyrin-Encapsulating Metal-Organic Materials

Zhang, Zhenjie 01 May 2014 (has links)
Metal-organic materials (MOMs) represent an emerging class of materials comprised of molecular building blocks (MBBs) linked by organic linker ligands. MOMs recently attract great attention because of their ability to exhibit permanent porosity, thereby enabling study of properties in the context of gas storage, gas separation, solid supports for sensors, catalysis and so on. Although MOMs have been studied for over 60 years, the porous nature of MOMs was not systematically and widely explored until the early 1990's. This may be one of the reasons why template-directed synthesis of MOMs remains relatively underexplored, especially when compared to other classes of porous material (e.g. zeolite and mesoporous silicates). However, the study of template-directed synthesis exhibits great significance to the research field of MOMs as these considerations: (i) to access analogues of prototypal MOM platforms that cannot be prepared directly; (2) to create porous materials with new topologies; (3) to transfer the functionality of templates to MOMs; (4) to exert fine control over structural features. In this dissertation, I chose a functional organic material, porphyrin, as templates and succeeded to synthesize a series of porphyrin-encapsulating MOMs, (porph@MOMs), in which the porphyrins were encapsulated inside the cavities as guests. Porphyrins molecules can template the formation cavities with different shapes and sizes (e.g. triangle, square or hexagon) to accommodate the porphyrins molecules when organic ligands with different size and symmetry were utilized during the synthesis. On the other hand, the porphyrins molecules can also template the formation of octahemioctahedral cages or hexahedron cages with porphyrins trapped inside, which further built the tbo, pcu, rtl, zzz, mzz networks. By selecting templated porph@MOMs as platforms, post-synthetic modifications (PSMs) of porph@MOMs were further studied. A cadmium MOM, porph@MOM-10, can undergo PSM by Mn(II) or Cu(II) via single-crystal-to-single-crystal processes. The Mn- and Cu- exchanged PSM variants exhibit catalytic activity for epoxidation of trans-stilbene. Porph@MOM-11 can serve as a platform to undergo a new PSM process involving cooperative addition of metal salts via single-crystal-to-single-crystal processes. The incorporation of the salts leads to higher H2 and CO2 volumetric uptake and higher CO2 vs CH4 selectivity. Porph@MOM-11 was also found to be a versatile platform that can undergo metal ion exchange with Cu2+ in single-crystal-to-single-crystal fashion. The use of mixed metal salt solutions (Cu2+/Cd2+) with varying ratios of metal salts enabled systematic study of the metal exchange process in porph@MOM-11 in such a manner that, at one extreme, only the Cd porphyrin moieties undergo metal ion exchange, whereas at the other extreme both the framework and the porphyrin moiety are fully exchanged. It is also observed that a concerted PSMs approach of metal ion exchange and ligand addition towards a porphyrin-walled MOM, porphMOM-1 affords a porphyrin-encapsulating MOM, porph@MOM-14, in which porphyrin anions are encapsulated in the octahemioctahedral polyhedral cage via weak interactions. Beside of the template-directed synthesis and post-synthetic modification of porph@MOMs, pre-synthetic control of metal-organic materials' structures was also studied in this dissertation. Due to the partial flexibility of 1,3-benzenedicarboxylate linkers, kagom[eacute] lattice and NbO supramolecular isomers were observed from a complexation of bulky 1,3-benzenedicarboxylate ligand to Cu(II) paddlewheel moieties. In addition, a new family of hybrid nanoball vanadium MOM structures (Hyballs) was prepared by the self-assemble of trimesic acid with tetranuclear and pentanuclear vanadium polyoxometalates. These hyballs are robust, permanently porous and their exterior surfaces facilitate cross-linking via hydrogen bonds or coordination bonds to generate pcu networks.
92

[M3(μ3-O)(O2CR)6] and Related Trigonal Prisms: Versatile Molecular Building Blocks for 2-Step Crystal Engineering of Functional Metal-Organic Materials

Schoedel, Alexander 07 March 2014 (has links)
Metal-organic materials (MOMs) assembled from metal-based building blocks and organic linkers have attracted much interest due to their large pore dimensions and their enormous structural diversity. In comparison to their inorganic counterparts (zeolites), these crystalline materials can be easily modified to tailor pore dimensions and functionality for specifically targeted properties. The work presented herein encompasses the development of a synthetic 2-step process for the construction of novel families of MOMs or 'platforms' and allow us exquisite design and control over the resulting network topologies. Examples of cationic mesoporous structures were initially exploited, containing carboxylate based centers connected by metal-pyridine bonds. The inherently cationic nets allowed for subsequent anion exchange which can be regarded as an elegant and easy postsynthetic modification strategy. The incorporation of different functionalities inside the channels of the networks was then demonstrated as useful in terms of carbon dioxide capture. The scope of the 2-step process was then expanded to construction of the first trinodal MOM platform involving triangular, tetrahedral and trigonal prismatic building units: tp-PMBB-1-asc. Examples of reticular chemistry are shown which enable the formation of large and functionalized nanocages with retention of the underlying network topology. Gas adsorption studies indicate relatively high uptakes of carbon dioxide and hydrogen which, together with the use of inexpensive ligands, provide an excellent cost/performance ratio of these materials. Moreover, very high stability in organic solvents and especially in water are addressed which is a particularly challenging, but industrially relevant target in the field of Metal-Organic Materials. The 2-step approach was also used to synthesize a new and versatile class of metal-organic materials with augmented lonsdaleite-e (lon-e-a) topology. This family of lon-e nets is built by pillaring of hexagonal 2-dimensional kagomé (kag) lattices that are in turn pillared by a trigonal prismatic Primary Molecular Building Block (tp-PMBB-1). These MOMs represent the first examples of axial-to-axial-pillared undulating kag layers and they are readily fine-tuned because the bdc2- moieties can be varied at their 5-position without changing the overall structure. This lon-e platform possesses functionalized hexagonal channels since the kag lattices are necessarily eclipsed. The effect of the substituent at the 5-positions of the bdc2- linkers upon gas adsorption, particularly the heats of adsorption of carbon dioxide and methane, were studied. If linear dicarboxylates were instead utilized, we were able to synthesize a new and versatile class of metal-organic materials that exhibits 4,6-connected fsb topology. These networks are constructed from simple and inexpensive building units and since interpenetration is precluded, afford very high void volumes. They therefore represent ideal targets to generate a novel family of frameworks, because of the ready availability functionalized and expanded ligand derivatives. They also allow for systematic fine tuning and could ultimately provide a roadmap to ultra-high surface areas from simple building blocks.
93

Toward the Synthesis of Designed Metal-Organic Materials

Brant, Jacilynn A 10 July 2008 (has links)
Metal-Organic Materials (MOMs) are an emerging class of crystalline solids that offer the potential for utilitarian design, as one of the greatest scientific challenges is to design functional materials with foreordained properties and eventually synthesize custom designed compounds for projected applications. Polytopic organic ligands with accessible heteroatom donor groups coordinate to single-metal ions and/or metal clusters to generate networks of various dimensionality. Advancements in synthesis of solid-state materials have greatly impacted many areas of research, including, but not limited to, communication, computing, chemical manufacturing, and transportation. Design approaches based on building blocks provide a means to conquer the challenge of constructing premeditated solid-state materials. Single-metal ion-based molecular building blocks, MNx(CO2)y+x, constructed from heterochelating ligands offer a new route to rigid and predictable MOMs. Specific metal bonds are considered responsible for directing the geometry or topology of metal-organic assemblies; these bond geometries constitute the building units, MNxOy. When these building units are connected through appropriate angles, nets or polyhedra can be targeted and synthesized, such as metal-organic cubes and Kagomé lattices. MNx(CO2)y+x MBBs can result in MN2O2 building units with square planar or see-saw geometries, depending on the mode of chelation. Using a 6-coordinate metal and a heterochelating ligand with bridging functionality, TBUs can be targeted for the synthesis of valuable networks, such as Zeolite-like Metal-Organic Frameworks (ZMOFs). Zeolitic nets, constructed from tetrahedral nodes connected through ~145° angles, are valuable targets in MOMs, as they inherently contain cavities and/or channel systems and lack interpenetration. Other design approaches have been explored for the design of ZMOFs from TBUs, such as the use of hexamethylenetetramine (HMTA) as an organic TBU. When this TBU coordinates to a 2-connected metal with appropriate angles, zeolite-like nets rare to metal-organic crystal chemistry can be accessed. Additionally, MNx(CO2)y MBBs have been used to construct metal-organic polyhedra (MOPs), used as supermolecular building blocks (SBBs), that can be peripherally functionalized and ultimately extended into threedimensional ZMOFs. Rational synthesis, mainly based on building block approaches, advances bridging the gap between design and construction of solid-state materials. However, some challenges still arise for the establishment of reaction conditions for the formation of intended MBBs and thus targeted frameworks.
94

Simulation moléculaire de l'interaction de molécules polaires avec des matériaux de la famille des MOFs

De Toni, Marta 13 July 2012 (has links) (PDF)
Mes travaux de thèse s'inscrivent dans le cadre de l'étude de l'adsorption de systèmes moléculaires confinés dans des matériaux nanoporeux. Le confinement d'un fluide a des effets importants sur ses propriétés thermodynamiques car la compétition entre les effets de la taille des pores et les effets d'interface engendre des comportements nouveaux très spécifiques, comme de nouvelles phases et de nouvelles transitions de phase. Ces phénomènes interviennent communément dans de nombreux processus et procédés industriels : échange ionique, séparations sélectives, catalyse hétérogène... En particulier, j'ai étudié par simulation moléculaire les propriétés d'adsorption de molécules polaires d'intérêt industriel (CO2 et H2O) dans une nouvelle classe de matériaux poreux cristallins hybrides organiques-inorganiques dénommés MOFs (Metal-Organic Frameworks). Il s'agit de systèmes avec des propriétés d'adsorption remarquables déterminées par leur variété topologique et versatilité dues à la richesse de la chimie organique et de coordination et au fait qu'ils peuvent être fonctionnalisés avant comme après synthèse. Dans un premier temps je me suis intéressée à l'adsorption du CO2 dans une famille de systèmes ayant tous la même topologie mais des volumes poreux différents, les IRMOFs. J'ai pu ainsi caractériser l'effet du confinement sur leur capacité d'adsorption et un comportement universel a été mis en évidence : la température critique diminue lorsque le confinement augmente. Ensuite, j'ai étudié une nouvelle MOF cationique dénommée Zn2(CBTACN). Après avoir réussi à localiser les anions halogénure extra-charpente (ce qui n'était pas possible expérimentalement), j'ai caractérisé l'adsorption du CO2 dans ce matériau, d'abord comme corps pur et ensuite dans des mélanges. Enfin, je me suis intéressée à la stabilité hydrothermique de ces matériaux, qui est une thématique cruciale pour les applications. En particulier, j'ai observé le mécanisme d'hydratation d'un analogue de la MOF-5 qui se fait en deux étapes. Des effets collaboratifs, qui n'avaient pas été soulignés jusqu'à présent dans la littérature, ont été également mis en évidence.
95

High-throughput synthesis and application development of water-stable MOFs

Schoenecker, Paul M. 12 November 2012 (has links)
Metal-organic frameworks (MOFs) are porous networks of metal-centers connect by organic ligands, which have potential for an array of applications including gas separations and storage, drug delivery, and molecular sensing. A multitude of structures are reported with specific pore geometries and functionalities, but MOFs are not currently implemented in consumer or industrial applications. Two major setbacks have hindered their transition to the applied level. 1) Many MOFs are not stable in the presence of ambient moisture. 2) Most syntheses are costly and take place under batch-style solvothermal conditions. This thesis addresses both of these setbacks and examines the performance potential of water-stable MOFs for selective gas adsorption. A representative set of MOFs are exposed to water, and structural effects are monitored from a before and after comparison to identify properties of water-stable MOFs. A novel continuous-flow MOF synthesis process is reported along with preliminary optimization experiments, which yield direct suggestions for future process improvements. Batch-style scale-up experiments are also conducted for three other MOFs, which provide insight into synthesis phenomena. Application specific results are reported for toxic chemical filtration and carbon dioxide removal from flue gas using MOFs. The thesis concludes by summarizing the experimental findings, discussing the application potential of specific MOFs, and recommending topics for future research projects. Pitfalls observed during this research are also directly discussed along with potential solutions.
96

Synthèse de nouveaux matériaux de type MOFs à propriétés acido-basiques et évaluation en catalyse

Savonnet, Marie 06 October 2011 (has links) (PDF)
Les MOFs résultent de l'organisation de polyèdres métalliques reliés par des molécules organiques chélatantes pour former un réseau poreux. La construction de solides hybrides organiques/inorganiques permet d'imaginer un très grand nombre de matériaux aux propriétés structurales et physico-chimiques variées. Le confinement du substrat dans une structure rigide, associé à des propriétés particulières des clusters métalliques ainsi qu'à des parois pouvant être fonctionnalisées, fournissent un environnement catalytique unique, plaçant les MOF à la frontière entre les espèces types zéolites et les enzymes. Cependant, il existe aujourd'hui très peu de MOFs possédant plus d'une fonction catalytique. Néanmoins, les propriétés catalytiques des MOFs peuvent être améliorées de façons non négligeables grâce aux méthodes de post-fonctionalisation. Dans ce travail, nous reportons le développement d'une méthode de post-fonctionnalisation originale des amino-MOFs. La première étape consiste à convertir la fonction amine en fonction azoture. Puis, sans isolation ni purification, le MOF fonctionnalisé est obtenu par " Click Chemistry " en ajoutant l'alcyne correspondant. Cette méthode peut être appliquée à tous les types d'amino-MOFs et à quasi toutes les fonctions chimiques que l'on souhaite greffer. Une large librairie de nouveaux matériaux a ainsi été obtenue et complètement caractérisée. Cette méthode a aussi été utilisée pour créer des MOFs catalytiques à façon pour une réaction de transesterification, ainsi que pour l'investigation de nouvelles applications plus fines (niches industrielle)
97

Mulitscale modeling and screening of nanoporous materials and membranes for separations

Haldoupis, Emmanuel 08 April 2013 (has links)
The very large number of distinct structures that are known for metal-organic frameworks (MOFs) and zeolites presents both an opportunity and a challenge for identifying materials with useful properties for targeted separations. In this thesis we propose a three-stage computational methodology for addressing this issue and comprehensively screening all available nanoporous materials. We introduce efficient pore size calculations as a way of discarding large number of materials, which are unsuitable for a specific separation. Materials identified as having desired geometric characteristics can be further analyzed for their infinite dilution adsorption and diffusion properties by calculating the Henry's constants and activation energy barriers for diffusion. This enables us to calculate membrane selectivity in an unprecedented scale and use these values to generate a small set of materials for which the membrane selectivity can be calculated in detail and at finite loading using well-established computational tools. We display the results of using these methods for >500 MOFs and >160 silica zeolites for spherical adsorbates at first and for small linear molecules such as CO₂ later on. In addition we also demonstrate the size of the group of materials this procedure can be applied to, by performing these calculations, for simple adsorbate molecules, for an existing library of >250,000 hypothetical silica zeolites. Finally, efficient methods are introduced for assessing the role of framework flexibility on molecular diffusion in MOFs that do not require defining a classical forcefield for the MOF. These methods combine ab initio MD of the MOF with classical transition state theory and molecular dynamics simulations of the diffusing molecules. The effects of flexibility are shown to be large for CH₄, but not for CO₂ and other small spherical adsorbates, in ZIF-8.
98

Metal-Organic Frameworks (MOFs) for Heterogeneous Catalysis : Synthesis and Characterization

Gustafsson, Mikaela January 2012 (has links)
Metal-organic frameworks (MOFs) are crystalline hybrid materials with interesting chemical and physical properties. This thesis is focused on the synthesis and characterization of different MOFs and their use in heterogeneous catalysis. Zeolitic imidazolate frameworks (ZIFs), including ZIF-4, ZIF -7 and ZIF -62, Ln(btc)(H2O) (Ln: Nd, Sm, Eu, Gd, Tb, Ho, Er and Yb), Ln2(bpydc)3(H2O)3, (Ln: Sm, Gd, Nd, Eu, Tb, Ho and Er), MOF-253-Ru and Zn(Co-salophen) MOFs were synthesized. Various characterization techniques were applied to study the properties of these MOFs. X-ray powder diffraction (XRPD), single crystal X-ray diffraction (XRD), scanning electron microscopy (SEM) and thermogravimetric analysis (TGA) were extensively used. The effect of synthesis parameters, such as batch composition and temperature, on the formation and morphology of ZIF-7 and ZIF-62 was studied. Structural transformation and flexibility of two series of lanthanide-based MOFs, Ln(btc)(H2O) (Ln: Nd, Ho and Er) and Ln2(bpydc)3(H2O)3, (Ln: Sm and Gd) upon drying and heating were characterized. Relations between metal coordination, structure flexibility and thermal stability among the Sm2(bpydc)3(H2O)3, Nd(btc)(H2O) and MOF-253 were investigated. Salophen- and phenanthroline-based organic linkers were designed, synthesized and characterized. Metal complexes were coordinated to these linkers to be used as catalytic sites within the MOFs. Catalytic studies using two MOF materials, Ln(btc) and MOF-253-Ru, as heterogeneous catalysts in organic transformation reactions were performed. The heterogeneous nature and recyclability of these MOFs were investigated and described. / <p>At the time of doctoral defence the following papers were unpublished and had a status as follows: Paper nr 4: Submitted; Paper nr 5: Submitted</p>
99

Chemistry and Applications of Metal-Organic Materials

Zhao, Dan 2010 December 1900 (has links)
Developing the synthetic control required for the intentional 3-D arrangement of atoms remains a holy grail in crystal engineering and materials chemistry. The explosive development of metal-organic materials in recent decades has shed light on the above problem. Their properties can be tuned by varying the organic and/or inorganic building units. In addition, their crystallinity makes it possible to determine their structures via the X-ray diffraction method. This dissertation will focus on the chemistry and applications of two kinds of metal-organic materials, namely, metal-organic frameworks (MOFs) and metal-organic polyhedra (MOP). MOFs are coordination polymers. Their permanent porosity makes them a good “gas sponge”. In the first section, an isoreticular series of MOFs with dendritic hexacarboxylate ligands has been synthesized and characterized structurally. One of the MOFs in this series, PCN-68, has a Langmuir surface area as high as 6033 m2 g-1. The MOFs also possess excellent gas (H2, CH4, and CO2) adsorption capacity. In the second section, a NbO-type MOF, PCN-46, was constructed based on a polyyne-coupled di-isophthalate linker formed in situ. Its lasting porosity was confirmed by N2 adsorption isotherm, and its H2, CH4 and CO2 adsorption capacity was examined at 77 K and 298 K over a wide pressure range (0-110 bar). Unlike MOFs, MOP are discrete porous coordination nanocages. In the third section, a MOP covered with bulky triisopropylsilyl group was synthesized, which exhibits a thermosensitive gate opening property. This material demonstrates a molecular sieving effect at a certain temperature range, which could be used for gas separation purpose. In the last section, a MOP covered with alkyne group was synthesized through kinetic control. The postsynthetic modification via click reaction with azide-terminated polyethylene glycol turned them into metallomicelles, which showed controlled release of an anticancer drug 5-fluorouracil. In summary, two kinds of metal-organic materials have been discussed in this dissertation, with the applications in gas storage, gas separation, and drug delivery. These findings greatly enrich the chemistry and applications of metal-organic materials.
100

Synthesis and gas adsorption study of porous metal-organic framework materials

Mu, Bin 17 May 2011 (has links)
Metal-organic frameworks (MOFs) or porous coordination polymers (PCPs) have become the focus of intense study over the past decade due to their potential for advancing a variety of applications including air purification, gas storage, adsorption separations, catalysis, gas sensing, drug delivery, and so on. These materials have some distinct advantages over traditional porous materials such as the well-defined structures, uniform pore sizes, chemically functionalized sorption sites, and potential for post-synthetic modification, etc. Thus, synthesis and adsorption studies of porous MOFs have increased substantially in recent years. Among various prospective applications, air purification is one of the most immediate concerns, which has urgent requirements to improve current nuclear, biological, and chemical (NBC) filters involving commercial and military purposes. Thus, the major goal of this funded project is to search, synthesize, and test these novel hybrid porous materials for adsorptive removal of toxic industrial chemicals (TICs) and chemical warfare agents (CWAs), and to install the benchmark for new-generation NBC filters. The objective of this study is three-fold: (i) Advance our understanding of coordination chemistry by synthesizing novel MOFs and characterizing these porous coordination polymers; (ii) Evaluate porous MOF materials for gas-adsorption applications including CO2 capture, CH4 storage, other light gas adsorption and separations, and examine the chemical and physical properties of these solid adsorbents including thermal stability and heat capacity of MOFs; (iii) Evaluate porous MOF materials for next-generation NBC filter media by adsorption breakthrough measurements of TICs on MOFs, and advance our understanding about structure-property relationships of these novel adsorbents.

Page generated in 0.0976 seconds