Spelling suggestions: "subject:"metalloxide"" "subject:"metaloxide""
201 |
Source/drain engineering for extremely scaled MOSFETs /Zhang, Zhikuan. January 2005 (has links)
Thesis (Ph.D.)--Hong Kong University of Science and Technology, 2005. / Includes bibliographical references. Also available in electronic version.
|
202 |
Electrical and material characteristics of hafnium-based multi-metal high-k gate dielectrics for future scaled CMOS technology physics, reliability, and process development /Rhee, Se Jong, January 1900 (has links) (PDF)
Thesis (Ph. D.)--University of Texas at Austin, 2005. / Vita. Includes bibliographical references.
|
203 |
Compact modeling of double-gate metal-oxide-semiconductor field-effect transistor /Shi, Xuejie. January 2006 (has links)
Thesis (Ph.D.)--Hong Kong University of Science and Technology, 2006. / Includes bibliographical references. Also available in electronic version.
|
204 |
Quantum Mechanical Effects on MOSFET ScalingWang, Lihui. January 2006 (has links)
Thesis (Ph. D.)--Electrical and Computer Engineering, Georgia Institute of Technology, 2007. / Philip First, Committee Member ; Ian F. Akyildiz, Committee Member ; Russell Dupuis, Committee Member ; James D. Meindl, Committee Chair ; Willianm R. Callen, Committee Member.
|
205 |
Silicon-based vertical MOSFETsJayanarayanan, Sankaran, Banerjee, Sanjay, January 2004 (has links) (PDF)
Thesis (Ph. D.)--University of Texas at Austin, 2004. / Supervisor: Sanjay Banerjee. Vita. Includes bibliographical references.
|
206 |
Heteroepitaxial Ge on Si via High-Bandgap III-V Buffers for Low-Power Electronic ApplicationsNguyen, Peter D. 23 June 2016 (has links)
Over the past four decades, aggressive scaling of silicon (Si) based complementary metal-oxide-semiconductor (CMOS) transistors has resulted in an exponential increase in device density, and thus an exponential increase in computing power. Increasing transistor density also results in increasing total power consumption and thus, necessitates supply voltage scaling in order to maintain low-power device operation. However, with increased supply voltage scaling, transistor drive current is significantly degraded due to the low carrier mobility of Si. To overcome the key challenges of device and voltage scaling required for low-power electronic operation without the degradation of transistor drive current requires the adoption of narrow bandgap channel materials with superior transport properties. However, the use of such materials as bulk substrates remains cost-prohibitive. Thus, another key challenge lies in the heterogeneous integration of high-mobility channel materials on affordable, established Si platform. Germanium (Ge) is an attractive candidate for next-generation low-power devices owing to its high electron and high hole mobility. Recently, AlAs/GaAs epilayers were demonstrated as a potential buffer platform for next-generation Ge-based electronics integrated on Si substrate. This research systematically investigates the structural characteristics of the Ge epitaxial layer heterogeneously integrated on Si using a composite III-V AlAs/GaAs buffer and the electrical characteristics of MOS capacitors (MOS-C's) fabricated on the aforementioned stack. Further passivation techniques and interface engineering is then pursued on MOS-C's fabricated from (100) and (110) crystallographically oriented epitaxial Ge integrated on AlAs/GaAs material stacks, balancing out effective oxide thickness (EOT) and reduction of oxide and interfacial traps in order to ensure a pristine interfacial quality for high-performance electronic applications. Further, work function tuning is demonstrated for the first time on the different crystallographically oriented epitaxial Ge integrated on AlAs/GaAs material stacks using two different gate metals, demonstrating the tunability of threshold voltage, VTH, required for transistor applications. The research demonstrates the feasibility of future high-mobility channel material integration on Si via large bandgap buffer architectures for high-speed, low-power, high-performance CMOS logic applications. / Master of Science
|
207 |
Gate oxide integrity for deep submicron CMOS device/circuit reliabilityZhang, Jinlong 01 April 2001 (has links)
No description available.
|
208 |
Characterization of interface trap density in power MOSFETs using noise measurementsHuang, Chender, 1960- January 1988 (has links)
Low-frequency noise has been measured on commercial power MOSFETs. These devices, fabricated with the VDMOS structure, exhibit a 1/f type noise spectrum. The interface state density obtained from noise measurements was compared with that obtained from the subthreshold-slope method. Reasonable agreement was found between the two measurements. The radiation effects on the noise power spectral density were also investigated. The results indicated that the noise can be attributed to the generation of interface traps near the Si-SiO₂ interface. The level of interface traps generated by radiation was bias dependent. The positive gate bias gave rise to the largest interface-trap density.
|
209 |
Large scale dynamic molecular modelling of metal oxide nanoparticles in engineering and biological fluidsLoya, Adil January 2015 (has links)
Nanoparticles (NP) offer great merits over controlling thermal, chemical and physical properties when compared to their micro-sized counterparts. The effectiveness of the dispersion of the NP is the key aspect of the applications in nanotechnology. The project studies the characterization and modification of functional NPs aided by the means of large scale molecular thermal dynamic computerized dispersing simulations, in the level of Nanoclusters (NC). Carrying out NP functionality characterisation in fluids can be enhanced, and analysed through computational simulation based on their interactions with fluidic media; in terms of thermo-mechanical, dynamic, physical, chemical and rheological properties. From the engineering perspective, effective characterizations of the nanofluids have also been carried out based on the particles sizes and particle-fluids Brownian motion (BM) theory. The study covered firstly, investigation of the pure CuO NP diffusion in water and hydrocarbon fluids, secondly, examination of the modified CuO NP diffusion in water. In both cases the studies were put under experiments and simulations for data collection and comparison. For simulation the COMPASS forcefield, smoothed particle hydrodynamic potential (SPH) and discrete particle dynamics potential (DPD) were implemented through the system. Excellent prediction of BM, Van der Waals interaction, electrostatic interaction and a number of force-fields in the system were exploited. The experimental results trend demonstrated high coherence with the simulation results. At first the diffusion coefficient was found to be 1.7e-8m2/s in the study of CuO NC in water based fluidic system. Secondly highly concurrent simulation results (i.e. data for viscosity and thermal conductivity) have been computed to experimental coherence. The viscosity trend of MD simulation and experimental results show a high level of convergence for temperatures between 303-323K. The simulated thermal conductivity of the water-CuO nanofluid was between 0.6—0.75W•m−1•K−1, showing a slight increase following a rise in temperature from 303 to 323 K. Moreover, the alkane-CuO nanofluid experimental and simulated work was also carried out, for analysing the thermo-physical quantities. The alkane-CuO nanofluid viscosity was found 0.9—2.7mpas and thermal conductivity is between 0.1—0.4W•m−1•K−1. Finally, the successful modification of the NPs on experimental and simulation platform has been analysed using different characterization variables. Experimental modification data has been quantified by using Fourier Transformation Infrared (FTIR) peak response, from particular ranges of interest i.e. 1667-1609cm-1 and 1668-1557cm-1. These FTIR peaks deduced Carboxylate attachment on the surface of NPs. Later, MD simulation was approached to mimic experimental setup of modification chemistry and similar agglomerations were observed as during experimental conditions. However, this approach has not been presented before; therefore this study has a significant impact on describing the agglomeration of modified NPs on simulation and experimental basis. Henceforth, the methodology established for metal oxide nanoparticle dispersion simulation is a novelty of this work.
|
210 |
A study of surface-related low-frequency noise in MOSFETs and metal films王曦, Wong, Hei. January 1990 (has links)
published_or_final_version / Electrical and Electronic Engineering / Doctoral / Doctor of Philosophy
|
Page generated in 0.0518 seconds