• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 4
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Diffusion Reactions at Metal-Oxide Interfaces and the Effect of an Applied Electric Field

Yu, Yeonseop 15 July 2005 (has links)
No description available.
2

Metal-Aluminum Oxide Interactions: Effects of Surface Hydroxylation and High Electric Field

Niu, Chengyu 12 1900 (has links)
Metal and oxide interactions are of broad scientific and technological interest in areas such as heterogeneous catalysis, microelectronics, composite materials, and corrosion. In the real world, such interactions are often complicated by the presence of interfacial impurities and/or high electric fields that may change the thermodynamic and kinetic behaviors of the metal/oxide interfaces. This research includes: (1) the surface hydroxylation effects on the aluminum oxide interactions with copper adlayers, and (2) effects of high electric fields on the interface of thin aluminum oxide films and Ni3Al substrate. X-ray photoelectron spectroscopy (XPS) studies and first principles calculations have been carried out to compare copper adsorption on heavily hydroxylated a- Al2O3(0001) with dehydroxylated surfaces produced by Argon ion sputtering followed by annealing in oxygen. For a heavily hydroxylated surface with OH coverage of 0.47 monolayer (ML), sputter deposition of copper at 300 K results in a maximum Cu(I) coverage of ~0.35 ML, in agreement with theoretical predictions. Maximum Cu(I) coverage at 300 K decreases with decreasing surface hydroxylation. Exposure of a partially dehydroxylated a-Al2O3(0001) surface to either air or 2 Torr water vapor results in recovery of surface hydroxylation, which in turn increases the maximum Cu(I) coverage. The ability of surface hydroxyl groups to enhance copper binding suggests a reason for contradictory experimental results reported in the literature for copper wetting of aluminum oxide. Scanning tunneling microscopy (STM) was used to study the high electric field effects on thermally grown ultrathin Al2O3 and the interface of Al2O3 and Ni3Al substrate. Under STM induced high electric fields, dielectric breakdown of thin Al2O3 occurs at 12.3 } 1.0 MV/cm. At lower electric fields, small voids that are 2-8 A deep are initiated at the oxide/metal interface and grow wider and deeper into the metal substrate, which eventually leads to either physical collapse or dielectric breakdown of the oxide film on top.
3

Elucidation of Metal-Metal Oxide Interfaces for Heterogeneous Catalysis and Electrocatalysis

Kaustubh Jaywant Sawant (17132059) 11 October 2023 (has links)
<p dir="ltr">Catalysis will play a pivotal role in the transformation of the current chemical and fuel industries, driving efforts to mitigate greenhouse gas emissions, curbing the release of hazardous waste, and efficiently utilizing energy resources. Hence, it is crucial to establish a fundamental understanding of the active sites that drive chemical reactions and the transformation of these active sites under varying reaction conditions. A particular class of catalysts that are extensively used in industrially relevant reactions, but not well understood, are metal nanoparticles supported over transition metal oxides. Under specific conditions, the metal nanoparticles are believed to be partially covered by reduced, ultrathin oxide films, which can drastically transform the physical, chemical, and electronic properties of the catalyst surface. These transformations are often referred to as the Strong Metal Support Interactions (SMSI). The structure and chemical properties of the encapsulating SMSI overlayers can determine the reactivity, selectivity, and stability of the catalyst. To explore these phenomena, the encapsulating overlayers on metal nanoparticles are most effectively studied using ultrathin film models supported on single crystal transition metal substrates. In this thesis, periodic density functional theory (DFT) calculations, along with surface science experiments in collaborators’ groups, are carried out to systematically study the molecular-level underpinnings of the metal oxide transformations.</p><p dir="ltr">As a starting point, we analyze the Pd/ZnO system. This is a potential methanol synthesis catalyst, and since ZnO is an irreducible oxide, it provides a test of the traditional hypothesis that partial reduction of support cations is necessary to exhibit SMSI. In order to compare our calculations with surface science experiments, where the ultrathin films are not in equilibrium with bulk species, we developed a mixed canonical – grand canonical phase diagram scheme. The scheme, when combined with exhaustive DFT calculations of many different ultrathin ZnO<sub>x</sub>H<sub>y</sub> film structures and stoichiometries, permits direct comparison of the calculated free energies of these disparate films. Although, the thin film models provide more well-defined conditions for studying SMSI, there are thermodynamic differences with the real SMSI system. These differences can be described by changing the thermodynamic ensemble used to analyze the DFT results and extrapolating to deduce the stability of films at realistic SMSI conditions. Using this formalism, we have discovered that ZnO<sub>x</sub>H<sub>y</sub> films on Pd, which don’t exist in bulk, may form, and promote SMSI in irreducible oxides. This behavior is traced to both hydrogen incorporation in the films and strong stabilization of the films by the Pd substrates.</p><p dir="ltr">The computational framework, initially developed for the Pd/ZnO system, is subsequently extended to conduct thermodynamic investigations across different metal substrates. We found that linear scaling relationships (SRs) exist for the ultrathin films on metal surfaces that correlate the film formation energies with the combination of oxide cation and anion binding energies. However, these SRs deviate from classic bond order conservation principles. To provide an explanation for these deviations, and to enhance the predictive capabilities of the SRs, we introduced a generalized bonding model for oxy-hydroxy films supported on metal surfaces. By combining the SRs with grand canonical phase diagrams, we can precisely predict the stability of encapsulated films under specific reaction conditions. To validate the computational scheme, we apply it to the traditional SMSI system involving TiO<sub>2</sub>-supported metal nanoparticles. Our calculations accurately predict which metals are prone to exhibit SMSI-like behavior and align well with available experimental results.</p><p dir="ltr">In order to analyze how these structures affect important real-world chemistries and identify key descriptors that influence their reactivity, we studied the adsorption behavior of common intermediates on oxide-decorated metal surfaces. We first investigated two types of ultrathin films, the compact graphite-like ZnO and the open honeycomb-like Zn<sub>6</sub>O<sub>5</sub>H<sub>5</sub> on Pt(111). We found that the graphite-like ZnO islands barely affect the electronic properties of the Pt surface, while the honeycomb-like Zn<sub>6</sub>O<sub>5</sub>H<sub>5</sub> network tunes the surface electron density of Pt such that the binding site for CO shifts from on-top to the bridge site. The findings enhance our understanding of metal-hydroxide interactions, potentially paving the way for innovative designs of highly efficient catalytic systems.</p><p dir="ltr">The SMSI effect is not confined to oxides used as supports. We confirmed the existence of a closely related phenomenon in Pt alloys, which are an important system for the oxygen reduction reaction (ORR). We identified elements that form stable oxy-hydroxy moieties on Pt surfaces under ORR conditions. Remarkably, elements like Cr, Mo, and Ir can form stable hydroxide 0d and 2d structures on Pt and can resist dissolution by preferentially covering the Pt edge and kink sites, which are otherwise susceptible to degradation. These nanoscale structures exhibit properties different from their bulk counterparts and can effectively tune the reactivity of the surface by introducing an inhomogeneous strain field into the Pt terrace sites.</p><p dir="ltr">The overarching goal of this dissertation is to formulate design principles applicable to metal nanoparticle catalysts coated with surface oxides. Given the pivotal role of these systems in industrially significant catalysts, the development of strategies aimed at engineering novel active sites using surface oxides is of great importance. The comprehensive molecular-level understanding of metal-metal oxide interactions, established through these studies, thus serves as a foundation for the study of these effects across a wider spectrum of reactions beyond ORR and CO oxidation. Through such studies, combined with rigorous experimental confirmation, it may ultimately be possible to engineer new classes of metal/oxide interfaces for desired catalytic applications.</p>
4

Elementary processes at surfaces and interfaces of electrochemically relevant systems

Demling, Angelika Verena 07 September 2023 (has links)
In elektrochemischen Zellen vollziehen sich die Haupteaktionen in der Regel an Oberflächen von Elektroden und Katalysatoren und deren Elektrolytgrenzflächen, wodurch Änderungen dort die Effizienz der Zelle stark beeinflussen können. Diese Arbeit behandelt elementare Prozesse an solchen Ober- und Grenzflächen, die die Bandstruktur und damit möglicherweise auch die Reaktivität des Systems verändern. Mit Zwei-Photonen-Photoelektronenspektroskopie (2PPE) untersuche ich solche Prozesse in drei Modellsystemen für Elektrodenoberflächen beziehungsweise Elektrolyt/Elektroden-Grenzflächen: ZnO wird als Material für die photoelektrochemische Wasserspaltung diskutiert. In zeitaufgelösten 2PPE-Spektren beobachte ich Oszillationen des Dipols der (10-10)-Oberfläche, die bislang unbekannten kohärenten Oberflächenphononen zuzuordnen sind. Ich diskutiere ihre Erzeugung und entwickle eine Methode, um ultraschnelle Änderungen des Oberflächendipols anhand der Intensität des Sekundärelektronenschwanzes eines 2PPE Spektrums zu quantifizieren. An der D2O/ZnO(10-10)-Grenzfläche untersuche ich mehrere Effekte der Wasseradsorption, wie Veränderungen der Austrittsarbeit und der kohärenten Oberflächenphononen. Anders als in früheren Studien stelle ich keine Oberflächenmetallisierung durch Wasseradsorption fest. Auch gibt es keinen klaren Hinweis auf Elektronensolvatisierung, wie sie an Wasser/Metall-Grenzflächen zu beobachten ist. An der DMSO/Cu(111)-Grenzfläche, einem Modellsystem der Elektrolyt/Kathoden-Grenzfläche in Metall-Luft-Batterien, bestimme ich die elementaren Schritte der Sauerstoffreduktion. Im DMSO werden kleine Polaronen ultraschnell gebildet und zum Teil in Oberflächendefekten eingefangen. Die Lebensdauer dieser gefangenen Elektronen kann mehrere Sekunden betragen. Sie reagieren mit co-adsorbiertem O2, nachdem es in das DMSO diffundiert ist, zu O2-. Die Modellierung der Diffusion liefert eine Abschätzung des Elektroden-Reaktanten-Abstandes für Elektronentransfer in DMSO. / In electrochemical cells, the main reactions usually proceed at the surfaces of electrodes and catalysts and their interfaces with the electrolyte. Hence, changes there can have a huge impact on the efficiency of the cell. This thesis concerns elementary processes at such surfaces and interfaces, which affect the electronic band structure and, thus, potentially the reactivity of the surface. Using two-photon photoelectron spectroscopy (2PPE), I investigate such processes in three model systems for electrode surfaces and electrolyte/electrode interfaces: ZnO is discussed as material for photoelectrochemical water splitting. In time-resolved 2PPE spectra, I observe oscillations of the (10-10) surface dipole, which are assigned to previously unknown coherent surface phonons. I discuss their generation and develop a method to quantify ultrafast surface dipole changes from the intensity of the secondary electron tail of a 2PPE spectrum. At the D2O/ZnO(10-10) interface, I examine several effects of water adsorption, such as changes of the work function and the coherent surface phonons. Unlike in a previous study, I do not observe surface metallization upon water adsorption. Moreover, there is no clear indication of electron solvation as found at water/metal interfaces. At the DMSO/Cu(111) interface, a model system for the electrolyte/cathode interface in metal-air batteries, I determine the elementary steps of superoxide formation. In the DMSO, small polarons are formed and partly trapped in surface defects on an ultrafast time scale. These trapped electrons can persist for several seconds and react with co-adsorbed O2 to from O2-. Modelling the diffusion yields estimates for the electrode-reactant distance for electron transfer in DMSO.

Page generated in 0.1096 seconds