Spelling suggestions: "subject:"sethanthane reforming"" "subject:"sethanthane deforming""
1 |
Dry reforming of methane using non-thermal plasma-catalysisGallon, Helen Jennifer January 2011 (has links)
This thesis has studied CO2 reforming of CH4 in atmospheric pressure, non-thermal plasma discharges. The objective of this research was to improve the current understanding of plasma-catalytic interactions for methane reforming. Chapter 1 introduces the existing and potential applications for methane reforming products. The industrial approaches to methane reforming and considerations for catalyst selection are discussed. Chapter 2 introduces non-thermal plasma technology and plasma-catalysis. An introduction to the analytical techniques used throughout this thesis is given. Chapter 3 investigates the effects of packing materials into the discharge gap. The materials were found to influence the reactant conversions for dry reforming of methane in the following order: quartz wool > no packing > Al2O3 > zeolite 3A > BaTiO3 > TiO2. In addition to the dielectric properties, the morphology and porosity of the materials was found to influence the reaction chemistry. The materials also affected the electrical properties of the plasma resulting in surface discharges, as opposed to a filamentary discharge mode. Chapter 4 investigates the effects of variation in CH4/CO2 ratios on plasma-assisted dry reforming of CH4. Differences in the reaction performance for different feed gas compositions are explained in terms of the possible reaction pathways and the electron energy distribution functions. A NiO/Al2O3 catalyst is introduced for plasma-catalytic dry reforming of CH4, which was found to have no significant effect on the reaction performance at low specific input energies. Chapter 5 presents the plasma-assisted reduction of a NiO/Al2O3 catalyst by CH4 and H2/Ar discharges. When reduced in a CH4 discharge, the active Ni/Al2O3 catalyst was effective for plasma-catalytic methane decomposition to produce H2 and solid carbon filaments. A decrease in the breakdown voltage was observed, following the catalyst reduction to the more conductive Ni phase. Chapter 6 investigates the performance of the plasma-reduced Ni/Al2O3 catalysts for plasma-catalytic dry reforming of methane. Whilst the activity towards dry reforming of CH4 was low, the CH4 plasma-reduced catalyst was found to be effective for catalysing the decomposition of CH4 into H2 and solid carbon filaments; both potentially useful products. Chapter 7 discusses further work relevant to this thesis.
|
2 |
A feasibility study of methane reforming by partial oxidation.Zhu, Jian N. January 2001 (has links)
Utilisation of natural gas (mainly methane, CH[subscript]4), a clean and abundant resource, is of great importance. Conventional method, steam reforming, though still dominant, requires a considerately high capital investment and an intensive energy input. Reforming natural gas by partial oxidation, potentially one of the most attractive alternatives, has been investigated vigorously for decades, mainly focusing on looking for suitable catalyst and understanding of the mechanisms of methane partial oxidation. This work focuses on the feasibility of methane partial oxidation reforming from gas phase reaction under fuel-rich conditions.Firstly, a detailed thermodynamic analysis has been conducted, which covers a broad range of operation conditions of temperature up to 2073 K, pressure up to 100 atm and initial O(subscript)2/CH(subscript)4 ratio of 0 to 2.5. It has been found that high syn-gas (H(subscript)2 and CO) yields can be achieved when the temperature is above 1073 K and the initial O(subscript)2/CH(subscript)4 ratio close to 0.5. High pressure is not favoured. However, high temperatures can suppress the effect of high pressures.Carbon deposition, a crucially important factor in methane partial oxidation, is mainly examined by means of thermodynamic analysis. Solid carbon was identified the major carbon deposition form, which could severely happen if the initial O(subscript)2/CH(subscript)4 ratio is less than 0.5. This feature was also indirectly proven during the experimental tests.Secondly, a series of CHEMKIN simulations were performed using various CH(subscript)4 oxidation reaction mechanisms. The general trend of the CH(subscript)4 partial oxidation reforming was revealed by simulations using the GRI, NIST and Konnov mechanisms. A new concept characterising CH(subscript)4 partial oxidation was conceived. i.e., a fast oxidation zone and a slow conversion ++ / zone, the reaction is under chemical control that requests high operating temperatures, and the reaction can be accelerated by using relatively high initial 0(subscript)2/CH(subscript)4 ratios.Experimental tests were performed to verify the findings obtained in thermodynamic and kinetic studies, and to identify appropriate reaction schemes for further analysis. Prediction from the NIST mechanisms has shown to be in good agreement with experimental observation when the temperature is less than 1273 K. For higher temperatures the NIST under-predicts the H(subscript)2 yield caused by the lack of carbon formation mechanisms. Two other mechanisms (Konnov and GRI) predicted similar trends but the reaction predicted commenced earlier. Therefore, the NIST was identified to be the best.NO(subscript)x catalytic effect on CH4 oxidation at fuel-rich conditions was confirmed experimentally. However, this effect only exists where the oxygen is available. Therefore, employing NO(subscript)x cannot help the CH(subscript)4 partial oxidation in the second reaction zone. Solely relying on NO(subscript)x to speed up the process or lower the operating temperature is not possible. However, employing NO(subscript)x to initiate the reaction at lower temperatures is viable. The possibility of taking the advantage of NOx catalytic effect for direct synthesis of CH3OH (methanol) has been shown feasible and, more attractively, the operating temperatures required are much lower than that for syn-gas production.Among three reaction schemes, i.e., the Glarborg, Bromly and Dagaut, which are able to account for the NO(subscript)x catalytic effect, the Glarborg mechanism proved to be the best in reproducing experimental measurements for syn-gas production tests. However, none available mechanisms can predict similar magnitude of the direct synthesis of CH(subscript)3OH. To understand the mechanisms ++ / of NO(subscript)x catalytic effect, a reaction scheme, Partial Oxidation Mechanisms (POM), has been composed successfully adding five additional reactions into the NIST. The POM can reveal the major catalytic reaction pathways and it is suitable for CH(subscript)4 partial oxidations both with and without NO(subscript)x addition.Finally, a series of simulations were conducted to conservatively estimate the feasibility of CH(subscript)4 partial oxidation using POM. High syn-gas yield is achievable within a reasonable residence time using adiabatic reactor. The variables significantly affecting the syn-gas yield, are preheating temperature, operating pressure, inert dilution, initial ratio of O(subscript)2/CH(subscript)4 and residence time. If NO(subscript)x is used as a catalyst, the preheating temperature can be further reduced.
|
3 |
12-CS2 production from methane reforming with H2SKheirinik, M., Rahmanian, Nejat 02 September 2024 (has links)
No / Methane reforming in the presence of hydrogen sulfide (H2SMR) is not only conspicuous in terms of producing valuable material but also because of its advantages in obtaining hydrogen as a clean fuel. Substitution of traditional hydrogen production processes such as methane steam reforming (MSR), elimination of natural gas amine–based H2S removal, and sulfur recovery processes have attracted much attention. The current hydrogen production is associated with consuming energy that is usually supplied by burning fossil fuels. Thus, producing hydrogen by current high greenhouse gas emitter methods seems not to be a rational approach to benefit from this clean energy source. Additionally, H2SMR with the potential of producing four moles of hydrogen and one mole of CS2 from methane could be a promising alternative as providing the opportunity to benefit from producing cleaner fuels and simultaneously making CS2 that is used for the production of more valuable products. This chapter reviews the recent progress in CS2 production from methane reforming in the presence of H2S and brings the effect of dominant parameters on this process.
|
4 |
Preparation and evaluation of sol-gel made nickel catalysts for carbon dioxide reforming of methaneSun, Haijun 07 August 2005
Sol-gel (solution-gelation) method was used to prepare Ni-Ti and Ni-Ti-Al catalysts for reforming of methane with carbon dioxide. This method, after optimizing the parameters such as hydrolysis and acid/alkoxide ratio, is able to make a Ni-Ti catalyst with a surface area as high as 426m2/g when calcined at 473K; but calcination at higher temperature lead to dramatic decrease in surface area. XRD, XPS, TEM and SEM were used to understand this change.
Using a packed bed reactor, the catalysts were evaluated with the reforming reaction. It was found that the activity of the Ni-Ti catalyst increases with the Ni loading in the range of 1-10wt%. The reduction temperature has strong effect on activity of the reduced catalyst. Up to 973K, the activity increases with the reduction temperature; but after 973K, the activity decreases and become 0 when the temperature is over 1023K. The Ni-Ti catalyst also deactivated as 15% after 4h of time on stream. The XRD analysis shows that Ti3O5 formed in the catalyst after higher-temperature reduction as well as after the reaction for a period of time. The formation of Ti3O5 may render the catalyst to loss its activity. However, further study is expected to understand the mechanism. TG/DTA analysis shows that both Ni-Ti and Ni-Ti-Al catalysts had carbon deposition; but the latter maintained higher activity in a longer period of time.
|
5 |
Preparation and evaluation of sol-gel made nickel catalysts for carbon dioxide reforming of methaneSun, Haijun 07 August 2005 (has links)
Sol-gel (solution-gelation) method was used to prepare Ni-Ti and Ni-Ti-Al catalysts for reforming of methane with carbon dioxide. This method, after optimizing the parameters such as hydrolysis and acid/alkoxide ratio, is able to make a Ni-Ti catalyst with a surface area as high as 426m2/g when calcined at 473K; but calcination at higher temperature lead to dramatic decrease in surface area. XRD, XPS, TEM and SEM were used to understand this change.
Using a packed bed reactor, the catalysts were evaluated with the reforming reaction. It was found that the activity of the Ni-Ti catalyst increases with the Ni loading in the range of 1-10wt%. The reduction temperature has strong effect on activity of the reduced catalyst. Up to 973K, the activity increases with the reduction temperature; but after 973K, the activity decreases and become 0 when the temperature is over 1023K. The Ni-Ti catalyst also deactivated as 15% after 4h of time on stream. The XRD analysis shows that Ti3O5 formed in the catalyst after higher-temperature reduction as well as after the reaction for a period of time. The formation of Ti3O5 may render the catalyst to loss its activity. However, further study is expected to understand the mechanism. TG/DTA analysis shows that both Ni-Ti and Ni-Ti-Al catalysts had carbon deposition; but the latter maintained higher activity in a longer period of time.
|
6 |
Design of Integrated Gasifier and Steam Methane ReformerGhouse, Jaffer H. January 2016 (has links)
While the quest of the human civilization continues towards a more sustainable energy resource, current energy conversion technologies need to be improved such that the rate of environmental impact that has occurred due to the rapid industrialization since the 20th century is mitigated. This search has motivated research into new energy conversion technologies that aim to reduce the environmental impact by either improving the efficiencies of existing technologies, developing new technologies with zero emissions or by improving reliability and reducing the cost of renewable energy. Process intensification through process integration is one of the areas of active research that improves the system efficiency by exploiting the synergies that exist between different processes. This thesis considers the design and operational feasibility of heat integrating two conventional industrial processes – gasification and steam reforming of methane for application in polygeneration. To this end, complex mathematical models that describe the integrated system are developed to study different design prospects and to determine if the device can be safely operated in a plant producing electricity, liquid fuels and hydrogen. The designs proposed in this thesis show that significant methane conversion comparable to industrial reformers can be achieved while providing the required cooling duty to the gasifier. The proposed integrated system produces hydrogen rich reformer synthesis gas (hydrogen and carbon monoxide) that can be blended with the hydrogen lean coal synthesis gas providing flexibility to change the molar H2/CO ratio necessary for different downstream processes in a polygeneration plant. Moreover, the results show that the integration helps improve plant carbon efficiency and reduce CO2 emissions. The major contribution of this thesis is the development of designs based on representative mathematical models that are safe to operate for producing several chemicals in polygeneration plants. / Dissertation / Doctor of Philosophy (PhD)
|
7 |
Desenvolvimento e caracterização de catalisadores de níquel suportados em matrizes CeO2-ZrO2-Al2O3, CeO2-La2O3-Al2O3 e ZrO2-La2O3-Al2O3 avaliados para as reações de reforma do metano / Development and characterization of nickel catalysts supported on CeO2-ZrO2-Al2O3, CeO2-La2O3-Al2O3 and ZrO2-La2O3-Al2O3 evaluated for the reactions of methane reformingAbreu, Amanda Jordão de 17 April 2012 (has links)
A reforma do metano é um processo de grande interesse industrial para a produção de hidrogênio e de gás de síntese. Entre as reações de reforma do metano, destacam-se as reações de reforma a vapor e a reação com dióxido de carbono. O catalisador comumente utilizado nos processos e Ni/Al2O3. Porém, durante este processo, ocorre uma indesejada formação de depósitos carbonáceos na superfície do catalisador, os quais levam a sua destruição mecânica e, consequentemente, sua desativação. Por isso, uma das propriedades mais importantes de um bom catalisador para as reações de reforma do metano é a sua resistência a desativação. Entre as propostas para melhorar o desempenho do catalisador encontra-se a incorporação do óxido de cério junto ao suporte alumina. Catalisadores Ni/Al2O3 incorporados em soluções sólidas formadas por CeO2-ZrO2, ZrO2-La2O3 e CeO2-La2O3 foram preparados, caracterizados e submetidos a ensaios catalíticos nas reações de reforma a vapor e com dióxido de carbono e oxidação parcial do metano com objetivo de avaliar o efeito da adição da solução sólida ao suporte. Os suportes foram preparados pelo método da co-precipitação e os catalisadores foram obtidos pelo método de impregnação e calcinados a 500°C. Estes compostos foram caracterizados por Fisissorção de Nitrogênio, Difração de Raios X (DRX), Espectroscopia dispersiva de raios X (EDX), espectroscopia de na região do ultra violeta e do visível (UV-vis-NIR), Redução à Temperatura Programada (RTP), Espectrocopia RAMAN, Espectroscopia fotoeletrônica de Raios X (XPS), Espectroscopia de absorção de Raios X (XAS) e Análise termogravimétrica. Os ensaios catalíticos mostraram que a adição de solução sólida melhorou o desempenho do catalisador Ni/Al2O3 e, dentre todos os catalisadores avaliados, os melhores desempenhos obtidos foram com os catalisadores suportados em Ni/CeO2-La2O3-Al2O3. / Nowadays, the methane reforming is large interest industrial for the take advantage of these gas in production the hydrogen and synthesis gas (syngas). Among in the reactions of methane stand of the reactions steam reforming and carbon dioxide reforming of methane. The main catalysts uses in the methane reforming is Ni/Al2O3. However, the supported-nickel catalyst is susceptible to the deactivation or the destruction by coke deposition. The carbon dissolves in the nickel crystallite and its diffuses through the nickel, leading for formation of the carbon whiskers, which results in fragmentation of the catalyst. Modification of such catalysts, like incorporation of suitable promoters, is desirable to achieve reduction of the methane hydrogenolysis and/or promotion of the carbon gasification. Catalysts 5% Ni/Al2O3 supported on solid solutions formed by ZrO2-CeO2, La2O3 and CeO2-ZrO2-La2O3 were prepared, characterized and evalueted in reactions steam and carbon dioxide refoming and partial oxidation of methane with objetive the value effect loading solution solid in support. The supports were prepared by co-precipitation method and catalysts were prepared by impregnation method and calcined at 500°C. The supports and catalysts were characterized by Nitrogen Adsorption, method -rays diffraction (XRD), X-rays dispersive spectroscopy (XDS), spectroscopy in the region of the ultraviolet and the visible (UV-vis NIR) to and temperature programmed reduction (TPR), RAMAN Spectrocopy, X-ray absorption spectroscopy and Termogravimetric Analysis. After all the catalytic reactions check which the addition of solid solution is beneficial for Ni/Al2O3 catalysts and the best catalysts are Ni/CeO2-La2O3-Al2O3.
|
8 |
Conversão de biogás em gás de síntese via reações de reforma do metano com CO2 e a vapor sobre catalisadores de Ni-Y-Al / Biogas conversion to synthesis gas via methane reforming reactions with CO2 and steam on Ni-Y-Al catalystsFerreira, Orlando Lima de Sousa 19 May 2010 (has links)
Devido a crescente busca por fontes de energia que utilizem combustíveis renováveis, a utilização do biogás (mistura de gases produzida durante a digestão de matéria orgânica) proveniente do tratamento anaeróbio de águas residuárias e esgotos, surge como um processo promissor para a produção de gás de síntese (mistura de H2 e CO), contribuindo para a geração de produtos de maior valor agregado e para o aproveitamento de rejeitos industriais e domésticos. O biogás normalmente é composto de 60-65% de CH4 e 30-35% de CO2 e, de acordo com a composição do biogás, pode-se combinar processos de reforma do metano com CO2 e reforma a vapor do metano de modo a maximizar o consumo do CH4 excedente presente no biogás, para a geração de gás síntese. Catalisadores baratos e eficientes devem ser desenvolvidos para estas aplicações. Este trabalho tem como objetivo o estudo das melhores combinações destas reações em função da composição de alimentação do reator, aliado ao desenvolvimento de catalisadores de níquel, ítrio e alumínio, buscando minimizar a deposição de carbono, que é o principal problema encontrado nestes processos. Os catalisadores foram preparados pela técnica de coprecipitação de óxido de ítrio e alumínio, no qual se impregnou o óxido de níquel. Os catalisadores foram caracterizados por diversas técnicas: EDX, método B.E.T., DRX, RTP, XAS, além dos ensaios catalíticos para as reações de reforma do metano: com CO2, a vapor e oxidativa. Os resultados mostraram que é possível a preparação de catalisadores de níquel suportado em mistura de Y2O3-Al2O3, e que eles são ativos para as reações de reforma do metano. / Due to the considerable growth in the demand for energy sources that use renewable fuels, the use of biogas (a mixture of gases produced during digestion of organic matter) from the anaerobic treatment of wastewater and sewage, appears as a promising process for the production of synthesis gas (mixture of H2 and CO), contributing to the generation of products with higher value and the use of industrial wastes and domestic. Biogas is typically composed of 60-65% of CH4 and 30-35% of CO2 and, according to the composition of biogas, it can combine the reform processes of methane with CO2 and steam reforming of methane to maximize the consumption of CH4 excess present in the biogas to the production of the synthesis gas. Cheap and efficient catalysts must be developed for these applications. This paper aims to study the best combinations of these reactions depending on the feed composition of the reactor, coupled with the development of catalysts of nickel, yttrium and aluminum in order to minimize the carbon deposition, which is the main problem in these processes. The catalysts were prepared by the technique of co-precipitation of yttrium oxide and aluminum, which is impregnated nickel oxide. The catalysts were characterized by different techniques: EDX, BET method, XRD, TPR, XAS, and catalytic tests for methane reforming reactions: CO2, steam and oxidative. The results showed that it is possible to prepare nickel catalysts supported on mixed Y2O3-Al2O3, and they are active for the methane reactions.
|
9 |
Estudo de catalisadores de níquel suportados em ZrO2 modificados aplicados em reações de reforma / Study of nickel catalysts supported on modified ZrO2 applied in reforming reactionsBellido, Jorge David Alguiar 11 August 2008 (has links)
O óxido de zircônio (ZrO2) é um material com características físicas e químicas que pode ser aplicado em vários campos, tanto de interesse industrial como acadêmico. Dentro da catálise, sistemas baseados em ZrO2 estão ganhando um crescente interesse, seja como suportes ou como catalisadores, tendo em vista que é possível alterar suas propriedades pela adição de diversos cátions. Este trabalho teve por objetivo o estudo de catalisadores de níquel suportados em ZrO2 modificados com os cátions, Mg2+, Ca2+, La3+ e Y3+ em diferentes proporções, e a aplicação dos mesmos nas reações de reforma seca de metano, reforma a vapor de metano, oxidação parcial de metano e reforma a vapor de etanol. Os suportes foram sintetizados pelo método de polimerização para a diluição dos cátions dentro da rede cristalina do ZrO2. A adição do níquel foi feita via impregnação úmida em uma proporção de 5% em massa para todos os suportes. Os suportes e catalisadores foram caracterizados por área superficial especifica, pelo método B.E.T., difração de raios-X, redução a temperatura programada, espectroscopia UV-Vis, ressonância paramagnética eletrônica e condutividade elétrica. A partir das caracterizações verificou-se que os suportes formaram soluções sólidas entre o ZrO2 e os cátions adicionados, em todas as proporções utilizadas. Também se observa que houve a estabilização da fase tetragonal do ZrO2, acompanhado de um aumento na área superficial, quando comparado ao ZrO2 puro, que apresentou uma mistura de fases tetragonal e monoclínica e uma baixa área superficial. As medidas de EPR mostraram a presença de radicais oxigênio cuja proporção aumentou em função do teor de aditivo utilizado no ZrO2, este efeito foi atribuído à presença de vacâncias de oxigênio. Nas medidas de RTP, observou-se uma variação no perfil de redução em função destas vacâncias, onde se identificou um efeito promotor na redução do NiO para menores temperaturas com o aumento do teor dos aditivos no ZrO2. Este efeito pode ser atribuído a interações entre as vacâncias de oxigênio nos suportes e espécies de níquel em contato com elas. Medidas de UV-Vis confirmaram a presença destas interações, que são dependentes tanto do cátion adicionado ao ZrO2, quanto do teor utilizado. As medidas de condutividade elétrica confirmaram a presença de vacâncias de oxigênio nos suportes. Nos ensaios de reforma seca de metano observou-se uma relação entre o comportamento catalítico e a condutividade elétrica dos suportes, sugerindo, assim, a participação das vacâncias de oxigênio na ativação das moléculas oxigenadas. Nos ensaios de reforma a vapor de metano e oxidação parcial de metano esta relação direta não foi observada, o que sugere diferentes mecanismos de ativação das moléculas oxigenadas por parte das vacâncias de oxigênio, além da influência de outros fatores. Nos ensaios de reforma a vapor de etanol, observou-se semelhança entre o comportamento catalítico desta reação e das reações de reforma seca, indicando similaridade na influência das modificações catalíticas no comportamento destas reações. / Zirconium dioxide is a material with physics and chemical characteristics that can be applied in many fields, as academic as industrial. In the catalysis, the interest in systems based on zirconia (ZrO2) are growing- up quickly, as a catalyst as a support, considering that ZrO2 properties can be changed by the addition of different cations. The objective of this work was the study of nickel catalyst supported on ZrO2, modified with the cations: Mg2+, Ca2+, La3+ and Y3+ in different proportions and their performance on catalytic tests of dry reforming of methane, steam reforming of methane, partial oxidation of methane and steam reforming of ethanol. The supports were prepared by the polymerization method for the dilution of the cations in the zirconia lattice. The nickel addition was made wet impregnation in a proportion of 5wt% for all the catalysts. Supports and catalysts were characterized by specific surface area (B.E.T method), Xray diffraction, temperature-programmed reduction, UV-Vis spectroscopy, electronic paramagnetic resonance and electrical conductibility. In the characterizations was observed the formation of solid solutions between the ZrO2 and the cations added in all proportions used. Also, it was observed the stabilization of tetragonal phase of ZrO2, accompanied by an increase in the surface area when compared to the pure ZrO2, which is a mixture of tetragonal and monoclinic phases with low surface area. The EPR measurements showed the presence of oxygen radicals whose proportion increased in function of the additive content in ZrO2, this effect was attributed to the presence of oxygen vacancies. In the TPR measurements, a variation on reduction patterns was observed in function of the oxygen vacancy presence, where is possible to identify a promoter effect on NiO reduction to lower temperature with the additive load increase in ZrO2. This effect can be attributed to interactions between the oxygen vacancies of support and nickel species close to them. UV-Vis measurements confirmed these interactions presence that are dependent both of the cation added as well the load used. The electrical conductivity measurements confirm the presence of oxygen vacancies in the supports. In the dry reforming of methane was observed a relation between the catalytic behavior and the electrical conductivity of the supports. This observation suggests the oxygen vacancies participation on oxygenates molecules activation. In the steam reforming of methane and the partial oxidation of methane this relation was not found, suggesting different ways for oxygenates molecules activation by the oxygen vacancies, besides other factors. In the steam reforming of ethanol, it was observed relation between the catalytic behavior of this reaction and the dry reforming of methane, indicating similarity on the influence of the catalyst modifications on the catalytic behavior of these reactions.
|
10 |
Efeito da adição de CeO2 no catalisador Ni/Al2O3 aplicado durante as reações de reforma a vapor e com dióxido de carbono do metano / Effect of CeO2 loading on the properties of Ni/CeO2/Al2O3 catalysts on the methane steam and with carbon dioxide reformingsAbreu, Amanda Jordão de 26 February 2008 (has links)
Na atualidade, a reforma do metano é de grande interesse industrial para o aproveitamento deste gás na produção de hidrogênio e de gás de síntese. Entre as reações de reforma do metano, destacam-se as reações de reforma a vapor e a reação com dióxido de carbono.O catalisador comumente utilizado nos processos re reforma do metano é Ni/Al2O3. Porém durante este processo, ocorre uma indesejada formação de depósitos de espécies carbonáceas na superfície deste catalisador, os quais levam a sua destruição mecânica e conseqüentemente sua desativação. Por isso, uma das propriedades mais importantes de um bom catalisador para as reações de reforma do metano é a sua resistência à desativação. Entre as propostas para melhorar o desempenho do catalisador encontra-se a incorporação do óxido de céria junto ao suporte alumina.Catalisadores 5%Ni/xCeO2/Al2O3 (x = 0, 1, 5, 10, 20 e 100%) forma preparados, caracterizados e submetidos a ensaios catalíticos nas reações de reforma a vapor e com dióxido de carbono de metano com objetivo de avaliar o efeito da adição de céria ao suporte.Os suportes e os catalisadores forma obtidos pelo método de impregnação e calcinados a 500ºC. Estes compostos foram caracterizados por Fisissorção de Nitrogênio pelo método B. E. T., Espectroscopia dispersiva de raios-X (EDX), espectroscopia de na região do ultra violeta e do visível (UV-vis-NIR) e Redução à Temperatura Programada (RTP). Após todas as reações catalíticas verificou-se que a adição de céria é benéfica ao catalisador Ni/Al2O3 e entre todos os catalisadores avaliados, o melhor desempenho obtido foram dos catalisadores contendo 20% de céria em massa, seguido do catalisador contendo 10%. / Nowadays, the methane reforming is large interest industrial for the take advantage of these gas in production the hydrogen and synthesis gas (syngas). Among in the reactions of methane stand of the reactiosn steam reformig and carbon dioxide reforming of methane. The main catalysts uses in the methane reforming is Ni/Al2O3. However, the supported-nickel catalyst is susceptible to the deactivation or the destruction by coke deposition. The carbon dissolves in the nickel crystallite and its diffuses through the nickel, leading for formation of the carbon whiskers, which results in fragmentation of the catalyst. Modification of such catalysts, like incorporation of suitable promoters, is desirable to achieve reduction of the methane hydrogenolysis and/or promotion of the carbon gasification. Catalysts 5%Ni/xCeO2/Al2O3 (x = 0, 1, 5, 10, 20 e 100%) were prepared, characterized and evalueted in reactions steam and carbon dioxide refoming of methane with objetive the value effect loading oxide ceria in support. The suppots and catalysts were prepared by impregnation method and calcined at 500ºC. The supports and catalysts were characterized by X Nitrogen Adsorption by B.E.T., method -rays diffraction (XRD), , Xrays dispersive spectroscopy (XDS), to spectroscopy in the region of the ultraviolet and the visible (UV-vis NIR) to and temperature programmed reduction (TPR). After all the catalytic reactions check which the addition of cerium is beneficial for Ni/Al2O3 catalysts and the best catlysts is 5%Ni/20%CeO2/Al2O3 following 5%Ni/10%CeO2/Al2O3.
|
Page generated in 0.0871 seconds