• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • Tagged with
  • 6
  • 6
  • 5
  • 5
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Treatment of nonspecific DNA-protein contacts and application to the excision mechanism of a unique human DNA glycosylase

Rutledge, Lesley R, University of Lethbridge. Faculty of Arts and Science January 2011 (has links)
This thesis concentrates on understanding how individual nonspecific DNA–protein contacts are used in the excision mechanism of the human DNA repair enzyme, alkyladenine DNA glycosylase (AAG). Initially, studies focus on understanding the structure and magnitude of these fundamentally different DNA–protein stacking and T-shaped interactions to be applied to the active site of AAG. High-level ab initio techniques revealed fundamental knowledge about the structure and magnitude of these distinctly different – and +– contacts between (one or two) conjugated amino acid(s) and one nucleobase. Additionally, the mechanism used by AAG to excise (neutral and cationic) damaged nucleotides was investigated using a hybrid ONIOM approach. Reaction potential energy surfaces reveal that AAG prefers to excise both neutral and cationic substrates through a concerted mechanism, yet the nonspecific contacts present in the active site are only catalytic for the cleavage of the neutral substrates. / xvi, 195 leaves : ill. (some col.) ; 29 cm + 1 CD-ROM
2

The role of DNA methylation in regulating LHX3 gene expression

Malik, Raleigh Elizabeth 25 February 2014 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / LIM homeodomain 3 (LHX3) is an important regulator of pituitary and nervous system development. To date, twelve LHX3 gene mutations have been identified in patients with combined pituitary hormone deficiency disease (CPHD). Understanding the molecular mechanisms governing LHX3/Lhx3 gene regulation will provide critical insights into organ development pathways and associated diseases. DNA methylation has been implicated in gene regulation in multiple physiological systems. This dissertation examines the role of DNA methylation in regulating the murine Lhx3 gene. To determine if demethylation of the Lhx3 gene promoter would induce its expression, murine pre-somatotrope pituitary cells that do not normally express Lhx3 (Pit-1/0 cells) were treated with the demethylating reagent, 5-Aza-2’-deoxycytidine. This treatment lead to activation of the Lhx3 gene and thus suggested that methylation contributes to Lhx3 gene regulation. Proteins that modify chromatin, such as histone deacetylases (HDACs) have also been shown to affect DNA methylation patterns and subsequent gene activation. Pit-1/0 pituitary cells treated with a combination of the demethylating reagent and the HDAC inhibitor, Trichostatin A led to activation of the Lhx3 gene, suggesting crosstalk between DNA methylation and histone modification processes. To assess DNA methylation levels, treated and untreated Pit-1/0 genomic DNA were subjected to bisulfite conversion and sequencing. Treated Pit-1/0 cells had decreased methylation compared to untreated cells. Chromatin immunoprecipitation assays demonstrated interactions between the methyl-binding protein, MeCP2 and the Lhx3 promoter regions in the Pit-1/0 cell line. Overall, the study demonstrates that DNA methylation patterns of the Lhx3 gene are associated with its expression status.
3

Potential role of histone deacetylases in the development of the chick and murine retina

Saha, Ankita 04 September 2014 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / The epigenetic state of any cell is, in part, regulated by the interaction of DNA with nuclear histones. Histone tails can be modified in a number of ways that impact on the availability of DNA to interact with transcriptional complexes, including methylation, acetylation, phosphorylation, ubiquituination, and sumoylation. Histones are acetylated by a large family of enzymes, histone acetyl transferases (HATs), and deacetylated by the histone deacetylases (HDACs). Acetylated histones are generally considered markers of genomic regions that are actively being transcribed, whereas deacetylated and methylated histones are generally markers of regions that are inactive. The goal of the present study was to 1) study the epigenetic state with regard to the presence of euchromatin and heterochromatin in the developing chick and murine retina, 2) study and compare the localization patterns of the classical HDACs in the developing chick and murine retina with respect retinal progenitors and early differentiated cell types 3) to test the hypothesis that overall HDAC activity is required for dividing retinal progenitors to leave the cell cycle and differentiate. Our results showed that the classical HDACs were ubiquitously expressed in the developing chick and murine retinas. Species specific differences as well as stage dependent variations were observed in the localization of the HDACs in the cell types that were studied in the chick and murine retina. Our preliminary results also showed that HDAC inhibition may lead to the inability of the cell types to leave the cell cycle and a subsequent increase in the number of progenitor cells present in the developing chick retina.
4

Expression of histone deacetylase enzymes in murine and chick optic nerve

Tiwari, Sarika January 2013 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Epigenetic alterations have been shown to control cell type specification and differentiation leading to the changes in chromatin structure and organization of many genes. HDACs have been well documented to play an important role in both neurogenesis and gliogenesis in ganglionic eminence and cortex-derived cultures. However, the role of HDACs in glial cell type specification and differentiation in the optic nerve has not been well described. As a first step towards understanding their role in glial cell type specification, we have examined histone acetylation and methylation levels as well as the expression levels and patterns of the classical HDACs in both murine and chick optic nerve. Analysis of mRNA and protein levels in the developing optic nerve indicated that all 11 members of the classical HDAC family were expressed, with a majority declining in expression as development proceeded. Based on the localization pattern in both chick and murine optic nerve glial cells, we were able to group the classical HDACs: predominantly nuclear, nuclear and cytoplasmic, predominantly cytoplasmic. Nuclear expression of HDACs during different stages of development studied in this project in both murine and chick optic nerve glial cells suggests that HDACs play a role in stage-dependent changes in gene expression that accompany differentiation of astrocytes and oligodendrocytes. Examination of localization pattern of the HDACs is the first step towards identifying the specific HDACs involved directly in specification and differentiation of glia in optic nerve.
5

Data analysis and creation of epigenetics database

Desai, Akshay A. 21 May 2014 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / This thesis is aimed at creating a pipeline for analyzing DNA methylation epigenetics data and creating a data model structured well enough to store the analysis results of the pipeline. In addition to storing the results, the model is also designed to hold information which will help researchers to decipher a meaningful epigenetics sense from the results made available. Current major epigenetics resources such as PubMeth, MethyCancer, MethDB and NCBI’s Epigenomics database fail to provide holistic view of epigenetics. They provide datasets produced from different analysis techniques which raises an important issue of data integration. The resources also fail to include numerous factors defining the epigenetic nature of a gene. Some of the resources are also struggling to keep the data stored in their databases up-to-date. This has diminished their validity and coverage of epigenetics data. In this thesis we have tackled a major branch of epigenetics: DNA methylation. As a case study to prove the effectiveness of our pipeline, we have used stage-wise DNA methylation and expression raw data for Lung adenocarcinoma (LUAD) from TCGA data repository. The pipeline helped us to identify progressive methylation patterns across different stages of LUAD. It also identified some key targets which have a potential for being a drug target. Along with the results from methylation data analysis pipeline we combined data from various online data reserves such as KEGG database, GO database, UCSC database and BioGRID database which helped us to overcome the shortcomings of existing data collections and present a resource as complete solution for studying DNA methylation epigenetics data.
6

Epigenetic alteration by prenatal alcohol exposure in developing mouse hippocampus and cortex

Chen, Yuanyuan January 2014 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Fetal alcohol spectrum disorders (FASD) is the leading neurodevelopment deficit in children born to women who drink alcohol during pregnancy. The hippocampus and cortex are among brain regions vulnerable to alcohol-induced neurotoxicity, and are key regions underlying the cognitive impairment, learning and memory deficits shown in FASD individuals. Hippocampal and cortical neuronal differentiation and maturation are highly influenced by both intrinsic transcriptional signaling and extracellular cues. Epigenetic mechanisms, primarily DNA methylation and histone modifications, are hypothesized to be involved in regulating key neural development events, and are subject to alcohol exposure. Alcohol is shown to modify DNA methylation and histone modifications through altering methyl donor metabolisms. Recent studies in our laboratory have shown that alcohol disrupted genome-wide DNA methylation and delayed early embryonic development. However, how alcohol affects DNA methylation in fetal hippocampal and cortical development remains elusive, therefore, will be the theme of this study. We reported that, in a dietary alcohol-intake model of FASD, prenatal alcohol exposure retarded the development of fetal hippocampus and cortex, accompanied by a delayed cellular DNA methylation program. We identified a programed 5-methylcytosine (5mC) and 5-hydroxylmethylcytosine (5hmC) cellular and chromatic re-organization that was associated with neuronal differentiation and maturation spatiotemporally, and this process was hindered by prenatal alcohol exposure. Furthermore, we showed that alcohol disrupted locus-specific DNA methylation on neural specification genes and reduced neurogenic properties of neural stem cells, which might contribute to the aberration in neurogenesis of FASD individuals. The work of this dissertation suggested an important role of DNA methylation in neural development and elucidated a potential epigenetic mechanism in the alcohol teratogenesis.

Page generated in 0.083 seconds