• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Estudo da condensação de refrigerantes halogenados e suas misturas com óleo de lubrificação no interior de micro canais / Condensation study of halogen refrigerants and mixtures with lubricant oil in microchannel tubes

Gonzales Mamani, Williams 26 October 2001 (has links)
A presente pesquisa envolve um estudo teórico-experimental da transferência de calor e da perda de carga na condensação e no escoamento monofásico de fluidos refrigerantes halogenados no interior de lâminas com micro canais. Os ensaios consideram o fluido refrigerante puro R-134-a e a mistura quase azeotrópica R-410A. As lâminas estudadas envolvem micro canais de seção quadrada de Dh = 1,214 mm e de seção circular de Dh = 1,494 mm. Os ensaios de líquido subresfriado compreendem velocidades mássicas de 390 a 1360 Kg/sm2 para um temperatura de saturação de 40ºC e subresfriamento de 10ºC. Por sua parte, os ensaios foram realizados considerando um fluxo de calor constante de 5 kW/m2, títulos de vapor de 0,1 a 0,9, velocidades mássicas de 410 a 1135 kg/sm2, temperaturas de saturação de 40 a 50ºC e misturas óleo-refrigerante com concentrações de óleo em massa de 0,25 e 0,45%. Para cada condição de ensaio foram avaliados o coeficiente de transferência de calor e a queda de pressão por atrito na lâmina ensaiada. Os resultados para escoamento monofásico apresentaram consistência com relação às correlações típicas aplicáveis a transferência de calor e perda de carga para regime turbulento em tubos convencionais, apresentando, em média, valores de 12% superiores. Na maioria das condições de ensaios de condensação, segundo mapas de escoamento disponíveis na literatura, foi identificado o domínio do padrão estreitamento anular. Este comportamento foi aferido pelos resultados experimentais de perda de carga mostrando dependência quase exclusiva do parâmetro de Martinelli, e o mecanismo conectivo como principal mecanismo de transferência de calor, característico no padrão anular. Os resultados de condensação foram correlacionados a partir de abordagens empíricas em função do parâmetro de Martinelli e o conceito de velocidade mássica equivalente. Assim como, a partir de uma abordagem semi-empírica considerando um modelo anular que permite avaliar os mecanismos principais de transferência de calor e quantidade de movimento, avaliando a espessura do filme de líquido na parede do canal. Finalmente, os resultados experimentais e os obtidos a partir das correlações desenvolvidas são comparados com estudos disponíveis na literatura relativos a lâminas com micro canais. / This project involves a theoretical-experimental study of heat transfer and pressure drop in condensation and single phase flow of halogen refrigerants in microchannel tubes. The tests include the pure refrigerant R-134a and quasi azeotropic mixture R-410A. The microchannel tubes tested include one with square ports of Dh = 1,214 mm and other with circular port of Dh = 1,494 mm. The subcooled liquid tests considered the mass velocities of 390 to 1360 kg/sm2, the saturation temperature of 40ºC and subcooled of 10ºC. The condensing tests considered a constant heat flux of 5 kW/m2, vapor quality of 0,15 to 0,9, mass velocities of 410 to 1135 kg/sm2, saturation temperature of 40 to 50ºC and oil-refrigerant mixtures with oil mass concentrations of 0,25 and 0,45%. For each test condition was evaluated the coefficient of heat transfer and frictional pressure drop in the microchannel tube. The single phase results agree with typical correlations used in conventional tubes to evaluate the heat transfer and pressure drop in turbulent flow, even though the most of experimental date are 12% higher. The most of flow patterns in condensation were identified as annular using the flow patterns maps available on literature. This behavior was verified through pressure drop results, which show exclusive dependence on Martinelli Parameter. The heat transfer results show that the main heat transfer mechanism was convective, typical in annular flow. The results of condensation were correlated from empirical approachs using the Martinelli parameter and the equivalent mass velocity concept. And, also a semi-empirical approach modeling the annular flow to evaluate the mechanism of heat transfer through the liquid film around the wall of the tube. Finally, the experimental results and the results obtained through the models were compared with correlations referred to microchannels available on the literature.
2

Estudo da condensação de refrigerantes halogenados e suas misturas com óleo de lubrificação no interior de micro canais / Condensation study of halogen refrigerants and mixtures with lubricant oil in microchannel tubes

Williams Gonzales Mamani 26 October 2001 (has links)
A presente pesquisa envolve um estudo teórico-experimental da transferência de calor e da perda de carga na condensação e no escoamento monofásico de fluidos refrigerantes halogenados no interior de lâminas com micro canais. Os ensaios consideram o fluido refrigerante puro R-134-a e a mistura quase azeotrópica R-410A. As lâminas estudadas envolvem micro canais de seção quadrada de Dh = 1,214 mm e de seção circular de Dh = 1,494 mm. Os ensaios de líquido subresfriado compreendem velocidades mássicas de 390 a 1360 Kg/sm2 para um temperatura de saturação de 40ºC e subresfriamento de 10ºC. Por sua parte, os ensaios foram realizados considerando um fluxo de calor constante de 5 kW/m2, títulos de vapor de 0,1 a 0,9, velocidades mássicas de 410 a 1135 kg/sm2, temperaturas de saturação de 40 a 50ºC e misturas óleo-refrigerante com concentrações de óleo em massa de 0,25 e 0,45%. Para cada condição de ensaio foram avaliados o coeficiente de transferência de calor e a queda de pressão por atrito na lâmina ensaiada. Os resultados para escoamento monofásico apresentaram consistência com relação às correlações típicas aplicáveis a transferência de calor e perda de carga para regime turbulento em tubos convencionais, apresentando, em média, valores de 12% superiores. Na maioria das condições de ensaios de condensação, segundo mapas de escoamento disponíveis na literatura, foi identificado o domínio do padrão estreitamento anular. Este comportamento foi aferido pelos resultados experimentais de perda de carga mostrando dependência quase exclusiva do parâmetro de Martinelli, e o mecanismo conectivo como principal mecanismo de transferência de calor, característico no padrão anular. Os resultados de condensação foram correlacionados a partir de abordagens empíricas em função do parâmetro de Martinelli e o conceito de velocidade mássica equivalente. Assim como, a partir de uma abordagem semi-empírica considerando um modelo anular que permite avaliar os mecanismos principais de transferência de calor e quantidade de movimento, avaliando a espessura do filme de líquido na parede do canal. Finalmente, os resultados experimentais e os obtidos a partir das correlações desenvolvidas são comparados com estudos disponíveis na literatura relativos a lâminas com micro canais. / This project involves a theoretical-experimental study of heat transfer and pressure drop in condensation and single phase flow of halogen refrigerants in microchannel tubes. The tests include the pure refrigerant R-134a and quasi azeotropic mixture R-410A. The microchannel tubes tested include one with square ports of Dh = 1,214 mm and other with circular port of Dh = 1,494 mm. The subcooled liquid tests considered the mass velocities of 390 to 1360 kg/sm2, the saturation temperature of 40ºC and subcooled of 10ºC. The condensing tests considered a constant heat flux of 5 kW/m2, vapor quality of 0,15 to 0,9, mass velocities of 410 to 1135 kg/sm2, saturation temperature of 40 to 50ºC and oil-refrigerant mixtures with oil mass concentrations of 0,25 and 0,45%. For each test condition was evaluated the coefficient of heat transfer and frictional pressure drop in the microchannel tube. The single phase results agree with typical correlations used in conventional tubes to evaluate the heat transfer and pressure drop in turbulent flow, even though the most of experimental date are 12% higher. The most of flow patterns in condensation were identified as annular using the flow patterns maps available on literature. This behavior was verified through pressure drop results, which show exclusive dependence on Martinelli Parameter. The heat transfer results show that the main heat transfer mechanism was convective, typical in annular flow. The results of condensation were correlated from empirical approachs using the Martinelli parameter and the equivalent mass velocity concept. And, also a semi-empirical approach modeling the annular flow to evaluate the mechanism of heat transfer through the liquid film around the wall of the tube. Finally, the experimental results and the results obtained through the models were compared with correlations referred to microchannels available on the literature.
3

[pt] MODELAGEM DE UM CIRCUITO DE TERMOSSIFÃO DE BAIXO IMPACTO AMBIENTAL COM APLICAÇÃO EM RESFRIAMENTO DE ELETRÔNICOS / [en] MODELING OF A TWO-PHASE THERMOSYPHON LOOP WITH LOW ENVIRONMENTAL IMPACT REFRIGERANT APPLIED TO ELECTRONIC COOLING

VERONICA DA ROCHA WEAVER 04 October 2021 (has links)
[pt] Diante dos constantes avanços da tecnologia os dispositivos eletrônicos vêm passando por um processo de miniaturização, ao mesmo tempo em que sustentam um aumento de potência. Essa tendência se mostra um desafio para seu gerenciamento térmico, uma vez que os sistemas de resfriamento típicos para eletrônicos utilizam ar como fluido de trabalho, e o seu baixo coeficiente de transferência de calor limita sua capacidade de atender às necessidades térmicas da indústria atual. Nesse sentido, o resfriamento bifásico tem sido considerado uma solução promissora para fornecer resfriamento adequado para dispositivos eletrônicos. Circuitos de termossifão bifásico combinam a tecnologia de resfriamento bifásico com sua inerente natureza passiva, já que o sistema não requer uma bomba para fornecer circulação para seu fluido de trabalho, graças às forças da gravidade e de empuxo. Um dissipador de calor de microcanais, localizado bem em cima do dispositivo eletrônico, dissipa o calor gerado. Isto o torna uma solução de baixo custo e energia. Além disso, ter um circuito de termossifão operando com um refrigerante de baixo GWP, como o R-1234yf, resulta em baixo impacto para o meio ambiente, uma vez que é um refrigerante ecologicamente correto e o sistema tem baixo ou nenhum consumo de energia. Este trabalho fornece um modelo numérico detalhado para a simulação de um circuito de termossifão bifásico, operando em condições de regime permanente. O circuito compreende um evaporador (chip e dissipador de calor de micro-aletas), um riser, um condensador refrigerado a água de tubo duplo e um downcomer. Equações fundamentais e constitutivas foram estabelecidas para cada componente. Um método numérico de diferenças finitas, 1-D para o escoamento do fluido por todos os componentes do sistema, e 2-D para a condução de calor no chip e evaporador foi empregado. O modelo foi validado com dados experimentais para o refrigerante R134a, mostrando uma discrepância em relação ao fluxo de massa em torno de 6 por cento, para quando o sistema operava sob regime dominado pela gravidade. A pressão de entrada do evaporador prevista apresentou um erro relativo máximo de 4,8 por cento quando comparada aos resultados experimentais. Além disso, a maior discrepância da temperatura do chip foi inferior a 1 grau C. Simulações foram realizadas para apresentar uma comparação de desempenho entre o R134a e seu substituto ecologicamente correto, R1234yf. Os resultados mostraram que quando o sistema operava com R134a, ele trabalhava com uma pressão de entrada no evaporador mais alta, assim como, com um fluxo de massa mais alto. Por causa disso, o R134a foi capaz de manter a temperatura do chip mais baixa do que o R1234yf. No entanto, essa diferença na temperatura do chip foi levemente inferior a 1 grau C, mostrando o R1234yf como comparável em desempenho ao R134a. Além disso, o fator de segurança da operação do sistema foi avaliado para ambos os refrigerantes, e para um fluxo de calor máximo do chip de 33,1 W/cm2, R1234yf mostrou um fator de segurança acima de 3. Isso significa que o circuito de termossifão pode operar com segurança abaixo do ponto crítico de fluxo de calor. Dada a investigação sobre a comparação de desempenho dos refrigerantes R134a e R1234yf, os resultados apontaram o R1234yf como um excelente substituto ecologicamente correto para o R134a, para operação em um circuito de termossifão bifásico. / [en] Given the constant advances in technology, electronic devices have been going through a process of miniaturization while sustaining an increase in power. This trend proves to be a challenge for thermal management since commonly electronic cooling systems are air-based, so that the low heat transfer coefficient of air limits its capacity to keep up with the thermal needs of today s industry. In this respect, two-phase cooling has been regarded as a promising solution to provide adequate cooling for electronic devices. Two-phase thermosyphon loops combine the technology of two-phase cooling with its inherent passive nature, as the system does not require a pump to provide circulation for its working fluid, thanks to gravity and buoyancy forces. A micro-channel heat sink located right on top of the electronic device dissipates the heat generated. This makes for an energy and cost-efficient solution. Moreover, having a thermosyphon loop operating with a low GWP refrigerant such as R-1234yf results in low impact for the environment since it is an environmentally friendly refrigerant, and the system has low to none energy consumption. This work provides a detailed numerical model for the simulation of a two-phase thermosyphon loop operating under steady-state conditions. The loop comprises an evaporator (chip and micro-fin heat sink), a riser, a tube-in-tube water-cooled condenser and a downcomer. Fundamental and constitutive equations were established for each component. A finite-difference method, 1-D for the flow throughout the thermoysphon s components and 2-D for the heat conduction in the evaporator and chip, was employed. The model was validated against experimental data for refrigerant R134a, showing a mass flux discrepancy of around 6 percent for when the system operated under gravity dominant regime. The predicted evaporator inlet pressure showed a maximum relative error of 4.8 percent when compared to the experimental results. Also, the chip temperature s largest discrepancy was lower than 1 C degree. Simulations were performed to present a performance comparison between R134a and its environmentally friendly substitute, R1234yf. Results showed that when the system operated with R134a, it yielded a higher evaporator inlet pressure as well as a higher mass flux. Because of that, R134a was able to keep the chip temperature lower than R1234yf. Yet, that difference in chip temperature was slightly lower than 1 C degree, showing R1234yf as comparable in performance to R134a. In addition, the safety factor of the system s operation was evaluated for both refrigerants, and for a maximum chip heat flux of 33.1 W/cm2, R1234yf showed a safety factor above 3. This means the thermosyphon loop can operate safely under the critical heat flux. Given the investigation on the performance comparison of refrigerants R134a and R1234yf, results pointed to R1234yf being a great environmentally friendly substitute for R134a for the two-phase thermosyphon loop.

Page generated in 0.0607 seconds