• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 81
  • 23
  • 14
  • 5
  • 4
  • 3
  • 2
  • 1
  • 1
  • Tagged with
  • 164
  • 57
  • 51
  • 50
  • 40
  • 28
  • 19
  • 16
  • 15
  • 15
  • 15
  • 15
  • 14
  • 13
  • 13
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
101

A CFD Model of Mixing in a Microfluidic Device for Space Medicine Technology

McKay, Terri L. 16 May 2011 (has links)
No description available.
102

Size-Dependant Separation of Multiple Particles in Spiral Microchannels

Chatterjee, Arpita 04 August 2011 (has links)
No description available.
103

Investigation of Mold Design and Process Parameters in Microinjection Molding to Fabricate a Deformable Membrane Mirror

El-Taleb, Ahmed Salem 26 December 2013 (has links)
No description available.
104

Topology optimization for the duct flow problems in laminar and turbulent flow regimes / 層流および乱流の内部流れを対象としたトポロジー最適化

Kubo, Seiji 25 March 2019 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(工学) / 甲第21753号 / 工博第4570号 / 新制||工||1712(附属図書館) / 京都大学大学院工学研究科機械理工学専攻 / (主査)教授 西脇 眞二, 教授 松原 厚, 教授 黒瀬 良一 / 学位規則第4条第1項該当 / Doctor of Philosophy (Engineering) / Kyoto University / DFAM
105

Turbulence in Soft Walled Micro Channels

Srinivas, S S January 2016 (has links) (PDF)
In comparison to the flow in a rigid channel, there is a multi-fold reduction in the transition Reynolds number for the flow in a micro channel when one of the walls is made sufficiently soft, due to a dynamical instability induced by the fluid-wall coupling. The flow after transition is characterized using Particle Image Velocimetry (PIV) in the x − y plane where x is the stream-wise direction and y is the cross-stream co-ordinate along the small dimension of the channel of height 0.2 − 0.3mm. For the two different soft walls of shear modulus 18 kPa and 2.19 kPaused here, the transition Reynolds number is about 250 and 330 respectively. The deformation of the microchannel due to the applied pressure gradient is measured in the experiments, and is used to predict the laminar mean velocity profiles for comparison with the experimental results. The mean velocity profiles in the microchannel are in quantitative agreement with those predicted for the laminar flow before transition, but are flatter near the centerline and have higher gradients at the wall after transition. The flow after transition is characterized by a mean velocity profile that is flatter at the center and steeper at the walls in comparison to that for a laminar flow. The root mean square of the stream-wise fluctuating velocity shows the characteristic sharp increase from the wall and a maximum close to the wall, as observed in turbulent flows in rigid-walled channels. However, the profile is asymmetric with a significantly higher maximum close to the soft wall in comparison to that close to the hard wall, and the Reynolds stress is found to be non-zero at the soft wall, indicating that there is a stress exerted by fluid velocity fluctuations on the wall. The turbulent energy production profile has a maximum at the soft wall, in contrast to the flow at a rigid surface where the turbulent energy production is zero at the wall (due to the zero Reynolds stress). The maximum of the root mean square of the velocity fluctuations and the Reynolds stress (divided by the fluid density) in the soft-walled microchannel for Reynolds numbers in the range 250-400, when scaled by suitable powers of the maximum velocity, are comparable to those in a rigid channel at Reynolds numbers in the range 5000-20000. The near-wall velocity profile shows no evidence of a viscous sub-layer for (yv∗/ν) as low as 2, but there is a logarithmic layer for (yv∗/ν) up to about 30, where the von Karman constants are very deferent from those for a rigid-walled channel. Here, v∗ is the friction velocity, ν is the kinematic viscosity and y is the distance from the soft surface. . The surface of the soft wall in contact with the fluid is marked with dye spots to monitor the deformation and motion along the fluid-wall interface. The measured displacement of the surface in the stream-wise direction, which is of the order of 5 − 12µm, is consistent with that calculated on the basis of linear elasticity. Low-frequency oscillations in the displacement of the surface are observed after transition in both the stream-wise and span-wise directions, indicating that the turbulent velocity fluctuations are dynamically coupled to motion in the solid. Modification of soft-wall turbulence in a micro channel due to the addition of small amounts of polymer The modification of soft-wall turbulence in a microchannel due to the addition of small amounts of polymer is experimentally studied using Particle Image Velocimetry (PIV) to measure the mean and the fluctuating velocities. The micro channels are of rectangular cross-section with height about 160 µm, width about 1.5 mm and length about 3 cm, with three walls made of hard Poly-dimethylsiloxane (PDMS) gel, and one wall made of soft PDMS gel with an elasticity modulus of about 18 kPa. A dynamical instabilty of the laminar flow due to the fluid-wall coupling, and a transition to turbulence, is observed at a Reynolds number of about 290 for the flow of pure water in the soft-walled microchannel (Verma and Kumaran, J. Fluid Mech., 727, 407-455, 2013). Solutions of polyacrylamide of molecular weight 5 × 106 and mass fraction up to 50 ppm, and of molecular weight 4 × 104 and mass fraction up to 1500 ppm, are used in the experiments. In all cases, the solutions are in the dilute limit be-low the critical concentration where the interactions between polymer molecules become important. The modification of the fluid viscosity due to addition of polymer molecules is small; the viscosity of the solutions with the highest polymer concentration exceed those for pure water by about 10% for the polymer with molecular weight 5 × 106, and by about 5% for the polymer with molecular weight 4 × 104. Two distinct types of flow modifications below and above a threshold mass fraction for the polymer, cTHRESHOLD , which is about 1 ppm for the polyacrylamide with molecular weight 5 × 106, and about 500 ppm for the polyacrylamide with molecular weight 4 × 104. As the polymer mass fraction increases up to the threshold value, there is no change in the transition Reynolds number, but there is significant turbulence attenuation the root mean square velocities in the stream wise and cross-stream directions decrease by a factor of 2, and the Reynolds stress decreases by a factor of 4 in comparison to that for pure water. When the polymer concentration increases beyond the threshold value, there is a decrease in the decrease in the transition Reynolds number by nearly one order of magnitude, and a further decrease in the intensity of the turbulent fluctuations. The lowest transition Reynolds number of about 35 for the solution of polyacrylamide with molecular weight 5 × 106 and mass fraction 50 ppm. For the polymer solutions with the highest concentrations, the fluctuating velocities in the stream wise and cross-stream direction are lower by a factor of 5, and the Reynolds stress is lower by a factor of 10, in comparison to pure water. Despite the significant turbulence attenuation, a sharp increase in the intensity of the fluctuating velocities is evident at transition for all polymer concentrations. Transitions to deferent kinds of turbulence in a channel with soft walls The flow in a rectangular channel with walls made of soft polyacrylamide gel is studied to examine the effect of soft walls on transition and turbulence. The width of the channel is much larger than the height, so that the flow can be considered approximately two-dimensional, the wall thickness is much larger than the channel height (smallest dimension), the bottom wall is fixed to a substrate and the top wall is unrestrained. The fluid velocity is measured using Particle Image Velocimetry, while the wall motion is studied by embedding beads in the soft wall, and measuring the time-variation of the displacement both parallel and perpendicular to the surface. As the Reynolds number increases, two different flow regimes are observed in sequence. The first is the ‘soft-wall turbulence’ resulting from a dynamical instability of the base flow due to the fluid-wall coupling. The flow in this case exhibits many of the features of the turbulent flow in a rigid channel, including the departure of the velocity profile from the parabolic profile, and the near-wall maxima in the stream-wise root mean square fluctuating velocity. However, there are also significant differences. The turbulence intensities, when scaled by suitable powers of the mean velocity, are much larger than those after the hard-wall laminar-turbulent transition at a Reynolds number of about 1000. The Reynolds stress profiles do not decrease to zero at the walls, indicating that the wall motion plays a role in the generation of turbulent fluctuations. There is no evidence of a viscous sub-layer close to the wall to within the experimental resolution. The mean velocity profile does satisfy a logarithmic law close to the surface within a region between 2-30 wall units from the surface, but the von Karman constants are very different from those for the hard-wall turbulence. The wall displacement measurements indicate that there is no observable motion perpendicular to the surface, but displacement fluctuations parallel to the surface are observed after transition, coinciding with the onset of velocity fluctuations in the fluid. The fluid velocity fluctuations are symmetric about the center line of the channel, and they show relatively little downstream variation after a flow development length of about 5 cm. As the Reynolds number is further increased, there is a second ‘wall flutter’ transition, which involves visible downstream traveling waves in the top (unrestrained) wall alone. Wall displacement fluctuations of low frequency (less than about 500 rad/s) are observed both parallel and perpendicular to the wall. The mean velocity profiles and turbulence intensities are asymmetric, with much larger turbulence intensities near the top wall. There is no evident logarithmic profile close to either the top or bottom wall. Fluctuations are initiated at the entrance of the test section, and the fluctuation intensities decrease with downstream distance, the fluctuation intensities first rapidly increase and then decrease as the Reynolds number is increased. For a channel with relatively small height (0.6 mm), the transition Reynolds number for the soft-wall instability is lower the hard-wall transition Reynolds number of about 1000, and the laminar flow becomes unstable to the soft-wall instability leading to soft-wall turbulence and then to wall flutter as the Reynolds number is increased. For a channel with relatively large height (1.8 mm), the transition Reynolds number for the soft-wall instability is higher than 1000, the flow first undergoes the hard-wall laminar-turbulent transition at a Reynolds number of about 1000, the turbulent flow undergoes the soft-wall transition leading to soft-wall turbulence, and then to wall flutter.
106

Electrophoretic focusing in microchannels combined with mass spectrometry : Applications on amyloid beta peptides

Mikkonen, Saara January 2016 (has links)
Analysis of low-abundance components in small samples remains a challenge within bioanalytical chemistry, and new techniques for sample pretreatments followed by sensitive and informative detection are required. In this thesis, procedures for preconcentration and separation of proteins and peptides in open microchannels fabricated on silicon microchips are presented. Analyte electromigration was induced by applying a voltage along the channel length, and detection was performed either by matrix-assisted laser desorption ionization mass spectrometry (MALDI-MS) within the open channel, or by sampling a nL fraction containing the preconcentrated analytes from the channel for subsequent nano-electrospray ionization- (nESI-) or MALDI-MS. Utilizing solvent evaporation from the open system during sample supply, sample volumes exceeding the 25-75 nL channel volume could be analyzed. For preconcentration/separation of components in the discrete channel volume a lid of inert fluorocarbon liquid was used for evaporation control. In Papers I and II, aqueous, carrier-free solutions of proteins and peptides were analyzed, and the method was successfully applied for fast and simple preconcentration of amyloid beta (Aβ) peptides, related to Alzheimer’s disease. The impact of possible impurities in the analysis of carrier-free solutions was investigated in Paper III with the 1D simulation software GENTRANS, and a method for open-channel isoelectric focusing in a tailor-made pH gradient was developed. The latter approach was used in Paper IV for preconcentration and purification of Aβ peptides after immunoprecipitation from cerebrospinal fluid and blood plasma, followed by MALDI-MS from a micropillar chip. Paper V includes simulations of an isotachophoretic strategy for selective enrichment of Aβ peptides. GENTRANS simulations were used to select the electrolyte composition, and 2D simulations in a geometry suitable for on-chip implementation were performed using COMSOL Multiphysics. / <p>QC 20160930</p>
107

Estudo teórico-experimental da transferência de calor e da perda de pressão em um dissipador de calor baseado em microcanais / A theoretical and experimental study on heat transfer and pressure drop in a heat sink based on microchannels

Nascimento, Francisco Júlio do 28 May 2012 (has links)
A presente dissertação trata de um estudo teórico-experimental sobre escoamento monofásico e bifásico em um dissipador de calor baseado em microcanais. Este tipo de dissipador de calor tem sido usado para a intensificação da troca de calor em sistemas compactos e de alto desempenho. A intensificação da troca de calor promovida pelo escoamento em microcanais é acompanhada de um incremento na perda de pressão, portanto o estudo destes dois parâmetros é essencial para o entendimento dos fenômenos relacionados e fundamental para o desenvolvimento de ferramentas de projeto para dissipadores de calor baseados em microcanais. Inicialmente, um levantamento bibliográfico extenso sobre a ebulição convectiva em microcanais de reduzido diâmetro foi realizado. Este estudo da literatura trata de critérios de transição entre micro- e macro-escala, padrões de escoamento, métodos de previsão do coeficiente de transferência de calor e perda de pressão. Atenção específica foi dada a estudos de dissipadores de calor baseados em microcanais. Com base nesta análise da literatura, uma bancada experimental foi confeccionada para que dados experimentais de transferência de calor e perda de pressão pudessem ser levantados a partir de um dissipador de calor de microcanais. O dissipador de calor fabricado para este estudo é constituído de 50 microcanais retangulares dispostos paralelamente com 15 mm de comprimento, 100 µm de largura, 500 µm de profundidade e espaçados entre si de 200 µm. Experimentos foram executados para o R134a, velocidades mássicas de 400 a 1500 kg/m²s, título de vapor máximo de 0,35 e fluxos de calor de até 310 kW/m². Como conclusão deste trabalho observa-se perda de pressão elevada em relação aos valores fornecidos pelos métodos de previsão da literatura e um coeficiente de transferência de calor próximo ao estimado pelo modelo de três zonas proposto por Thome et al. (2004). / This study presents a theoretical and experimental investigation on single and two-phase flows in a microchannel based heat sink. Multi-microchannel heat sinks are able of dissipating extremely high heat fluxes under confined conditions. Such characteristics have attracted the attention of academia and industry and actually several studies are being carried out in order to evaluate and optimize such devices. Initially, an extensive investigation of the literature concerning convective boiling in micro-scale channels was performed. This literature review covers transitional criteria between micro- and macro-scale flow boiling, two phase flow patterns, heat transfer coefficient and pressure drop during convective boiling. Special attention was given to studies concerning microchannels based heat sinks. Based on this investigation, an experimental facility was built for performing heat transfer and pressure drop measurements during single-phase flow and flow boiling in microchannel based heat sinks. For this study, a microchannel based heat sink was also manufactured. The heat sink contains 50 rectangular parallel microchannels, 15 mm long, 100 µm wide by 500 µm deep and separated by 200 µm walls. Experiments were performed for R134a, mass velocity of 400-1500 kg/m²s, maximum vapor quality of 0,35 and heat fluxes up to 310 kW/m². The database obtained in the present study was compared against pressure drop and heat transfer coefficient prediction methods from the literature. It was found that no one method is accurate in predicting heat sink pressure drop while heat transfer coefficient results were accurately predicted by the 3-zone model proposed by Thome et al. (2004).
108

Cross stream migration of compliant capsules in microfluidic channels

Kilimnik, Alexander 06 April 2012 (has links)
An understanding of the motion of soft capsules in microchannels is useful for a number applications. This knowledge can be used to develop devices to sort biological cells based on their size and stiffness. For example, cancer cells have a different stiffness from healthy cells and thus can be readily identified. Additionally, devices can be developed to detect flaws in synthetic particles. Using a 3D hybrid lattice Boltzmann and lattice spring method, the motion of rigid and soft capsules in a pressure-driven microfluidic flow was probed. The effect of inertial drift is evaluated in channels different Reynolds numbers. Other system parameters such as capsule elasticity and channel size are also varied to determine their effect. The equilibrium position of capsules in the channel is also obtained. The equilibrium position of rigid and soft capsules depends on the relative particle size. If the capsule is small, the equilibrium position is found to be closer to the channel wall. Conversely, for larger capsules, the equilibrium position is closer to the channel centerline. The capsule stiffness affects the magnitude of the cross-stream drift velocity. For a given Reynolds number, the equilibrium position of softer capsules is closer to the channel centerline. However, It is found that the equilibrium position of soft capsules is insensitive to the magnitude of the Reynolds number.
109

Molecular Simulation of Chemically Reacting Flows Inside Micro/Nano-channels

Ahmadzadegan, Amir 23 September 2013 (has links)
The main objective of this thesis is to study the fundamental behaviour of multi-component gas mixture flows in micro/nano-channels undergoing catalytic chemical reactions on the walls. This work is primarily focused on nano-scale reacting flows seen in related applications; especially, miniaturized energy sources such as micro-fuel cells and batteries. At these geometries, the order of the characteristic length is close to the mean free path of the flowing gas, making the flow highly rarefied. As a result, non-equilibrium conditions prevail even the bulk flow and therefore, continuum assumptions are not held anymore. Hence, discrete methods should be adopted to simulate molecular movements and interactions described by the Boltzmann equation. The Direct Simulation Monte Carlo (DSMC) method was employed for the present research due to its natural ability for simulating a broad range of rarefied gas flows, and its flexibility to incorporate surface chemical reactions. In the first step, fluid dynamics and the heat transfer of H₂/N₂ and H₂/N₂/CO₂ gas mixture slip flows in a plain micro-channel are simulated. The obtained results are compared to the corresponding data achieved from Navier-Stokes equations with slip/jump boundary conditions. Generally, very good agreements are observed between the two methods. It proves the ability of DSMC in replicating the fluid properties of multi-component gas mixtures even when high mass discrepancies exist among the species. Based on this comparison, the proper parameters are set for the prepared DSMC code, and the appropriate intermolecular collision model is identified. It is also found that stream variables should be calculated more accurately at flow boundaries in order to simulate the intense upstream diffusion emerging at low velocity flows frequently seen in micro/nano-applications. Therefore, in the second step, a novel pressure boundary condition is introduced for gas mixture flows by substituting the commonly used Maxwell velocity distribution with the Chapman-Enskog distribution function. It is shown that this new method yields better results for lower velocity and higher rarefaction level cases. In the last step, a new method is proposed for coupling the flow field simulated by DSMC and surface reactions modelled by the species conservation ODE system derived from the reaction mechanism. First, a lean H₂/air slip flow subjected to oxidation on platinum coated walls in a flat micro-channel 4μm in height is simulated as a verification test case. The results obtained are validated against the solutions of the Navier-Stokes equations with slip/jump boundary conditions and very good conformity is achieved. Next, several cases undergoing the same reaction with Reynolds numbers ranging from 0.2 to 3.6 and Knudsen numbers ranging from 0.025 to 0.375, are simulated using the verified code to investigate the effects of the channel height ranging from 0.5μm to 2μm , the inlet mass flow rate ranging from 5 kg/m².s to 25 kg/m².s, the inlet temperature ranging from 300K to 700K, the wall temperature ranging from 300K to 1000K, and the fuel/air equivalence ratio ranging from 0.28 to 1.5. Some of the findings are as follows: (1) increasing the surface temperature from 600K to 1000K and/or the inlet temperature from 300K to 700K results in negligible enhancement of the conversion rate, (2) the optimum value of the equivalence ratio is on the fuel lean side (around 0.5), (3) the efficiency of the reactor is higher for smaller channel heights, and (4) increasing the inlet mass flux elevates the reaction rate especially for the smaller channels; this effect is not linear and is more magnified for lower mass fluxes.
110

Analysis Of Single Phase Convective Heat Transfer In Microtubes And Microchannels

Cetin, Barbaros 01 January 2005 (has links) (PDF)
Heat transfer analysis of two-dimensional, incompressible, constant property, hydrodynamically developed, thermally developing, single phase laminar flow in microtubes and microchannels between parallel plates with negligible axial conduction is performed for constant wall temperature and constant wall heat flux thermal boundary conditions for slip flow regime. Fully developed velocity profile is determined analytically, and energy equation is solved by using finite difference method for both of the geometries. The rarefaction effect which is important for flow in low pressures or flow in microchannels is imposed to the boundary conditions of the momentum and energy equations. The viscous dissipation term which is important for high speed flows or flows in long pipelines is included in the energy equation. The effects of rarefaction and viscous heating on temperature profile and local Nusselt number are discussed. The results of the numerical method are verified with the well-known analytical results of the flow in macrochannels (i.e. Kn =0, Br =0) and with the available analytical results of flow in microchannels for simplified cases. The results show significant deviations from the flow in macrochannels.

Page generated in 0.0514 seconds