• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 81
  • 23
  • 14
  • 5
  • 4
  • 3
  • 2
  • 1
  • 1
  • Tagged with
  • 164
  • 57
  • 51
  • 50
  • 40
  • 28
  • 19
  • 16
  • 15
  • 15
  • 15
  • 15
  • 14
  • 13
  • 13
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
71

A Hybrid Electrokinetic Bioprocessor For Single-Cell Antimicrobial Susceptibility Testing

Lu, Yi January 2015 (has links)
Infectious diseases resulting from bacterial pathogens are the most common causes of patient morbidity and mortality worldwide. The rapid identification of the pathogens and their antibiotic resistances is crucial for proper clinical management. However, the standard culture-based diagnostic approach requires a minimum of two days from the initial specimen collection to result reporting. As a consequence, broad-spectrum antibiotics are often prescribed under the worst-case assumption without knowledge of the pathogens or their resistances. The current clinical practice results in improper treatment of the patient and causes the rapid emergence of multi-drug resistant pathogens. A rapid diagnostics system has therefore been developed which performs hybrid electrokinetic sample preparation and volume reduction, for single-cell antimicrobial susceptibility testing (AST). The system combines multiple electrokinetic forces for sample preparation, which reduces the sample volume for over 3 orders of magnitude and minimizes the matrix effects of physiological samples for enhanced sensitivity. The device is integrated with a single-cell AST system with microfluidic confinement and electrokinetic loading to phenotypically determine the bacterial antibiotic resistance at the single-cell level. The applicability of the system has been demonstrated for performing direct AST with urine and blood samples within one hour, enabling rapid infectious disease diagnostics in non-traditional healthcare settings.
72

The Georgia Tech regenerative electrode - A peripheral nerve interface for enabling robotic limb control using thought

Srinivasan, Akhil 21 September 2015 (has links)
Amputation is a life-changing event that results in a drastic reduction in quality of life including extreme loss of function and severe mental, emotional and physical pain. In order to mitigate these negative outcomes, there is great interest in the design of ‘advanced/robotic’ prosthetics that cosmetically and functionally mimic the lost limb. While the robotics side of advanced prosthetics has seen many advances recently, they still provide only a fraction of the natural limbs’ functionality. At the heart of the issue is the interface between the robotic limb and the individual that needs significant development. Amputees retain significant function in their nerves post-amputation, which offers a unique opportunity to interface with the peripheral nerve. Here we evaluate a relatively new approach to peripheral nerve interfacing by using microchannels, which hold the intrinsic ability to record larger neural signals from nerves than previously developed peripheral nerve interfaces. We first demonstrate that microchannel scaffolds are well suited for chronic integration with amputated nerves and promote highly organized nerve regeneration. We then demonstrate the ability to record neural signals, specifically action potentials, using microchannels permanently integrated with electrodes after chronic implantation in a terminal study. Together these studies suggest that microchannels are well suited for chronic implantation and stable peripheral nerve interfacing. As a next step toward clinical translation, we developed fully-integrated high electrode count microchannel interfacing technology capable of functioning while implanted in awake and freely moving animal models as needed for pre-clinical evaluation. Importantly, fabrication techniques were developed that apply to a broad range of flexible devices/sensors benefiting from flexible interconnects, surface mount device (SMD) integration, and/or operation in aqueous environments. Examples include diabetic glucose sensors, flexible skin based health monitors, and the burgeoning flexible wearable technology industry. Finally, we successfully utilized the fully integrated microchannel interfaces to record action potentials in the challenging awake and freely moving animal model validating the microchannel approach for peripheral nerve interfacing. In the end, the findings of these studies help direct and give significant credence to future technology development enabling eventual clinical application of microchannels for peripheral nerve interfacing.
73

Falling-film evaporation over horizontal rectangular tubes

Bustamante, John Gabriel 27 August 2014 (has links)
The present study is the first investigation of falling-film evaporation over horizontal rectangular tubes. This geometry is representative of the external profile of microchannel tubes. Incorporating these designs into shell-and-tube heat exchangers has the potential to provide compact, high-performance components for a wide range of applications. This fluid flow was investigated experimentally, targeting three areas: measurements of heat transfer coefficients, quantification of flow characteristics, and the performance of flow distributors. Falling-film evaporation experiments were conducted using water on a rectangular test section with dimensions of 203 × 1.42 × 27.4 mm (length × width × height), measuring heat transfer coefficients over a range of saturation temperatures, test section spacings, heat fluxes, and film Reynolds numbers. This was supported by a flow visualization study that quantified droplet and wave parameters using image analysis of high speed videos. Finally, the performance of eight liquid distributors, which are used to establish falling-film flows, was quantified and the size of the generated droplets and jets was measured. Three models were developed to predict the flow regime, wetted tube area, and heat transfer coefficient. The flow regime model is based on a thermodynamic analysis, while the wetted tube area is found with a hydrodynamic model based on idealized flow assumptions. Finally, the heat transfer model relies on a relationship with the classic Nusselt (1916) film theory. Each of these models demonstrated good agreement with the experimental data, as well as trends in the literature. The increased understanding of falling-film evaporation gained in this study will enable the accurate design of shell-and-tube heat exchangers with microchannel tubes.
74

Experimental Studies of the Hydrodynamics of Liquid Droplet Generation and Transport in Microchannels

Almutairi, Zeyad 16 October 2014 (has links)
Droplet microfluidics is a promising field since it overcomes many of the limitations of single phase microfluidic systems. The improved mixing time scale, the increase of number of samples and the isolation of droplets are some of its virtues. The core of droplet microfluidics is a two-phase flow condition that is subjected to scaling of the confining geometry. With the scaling the complexities of the flow phenomena arise. For that reason both the processes of droplet generation and transport are not fully understood for various flow and fluid conditions. The work in this thesis aims to experimentally examine droplet generation and transport in microchannels for flow and fluid conditions that are experimentally challenging to perform. Examination of droplet generation in a T-junction microchannel design was performed with a quantitative velocity field approach known as micro particle image velocimetry (μPIV). The studies on droplet generation focused on very fast generation regimes, namely transition and dripping that have not been studied for a T-junction design. This achievement was accomplished because of the development of a fast optical detection and triggering system that allowed for acquiring images of different identical droplets at the same position. μPIV results indicate that the quantitative velocity field patterns of different regimes share some similarities. The filling stage in the transition and dripping regimes had some resemblance in their velocity patterns. The velocity patterns for the start of droplet pinch-off were alike for the squeezing and transition regimes. Furthermore, the presence of a surfactant in the droplet phase above the critical micelle concentration (CMC) did not have an effect on the general velocity patterns as long as the capillary number Ca was matched with the no-surfactant condition. The studies of hydrodynamic properties of droplet transport were performed in hard materials to avoid cumulative error sources, such as material pressure compliance and swelling effects. The project had several parts: designing a microchannel network that allowed studying the hydrodynamic properties of small droplets, surface treatments of the channel material for stable droplet generation and examining the hydrodynamics of small liquid droplets with sizes that have not been reported in the literature. The studies examined effects of changing the interfacial tension, viscosity, and flow conditions on the transport of droplets. The experimental results from the hydrodynamic transport studies indicated that for the droplet sizes that were examined the pressure drop of droplets was affected by the capillary number Ca and length of the droplet Ld. Also, the presence of surfactants altered the hydrodynamic properties of droplets. At a high concentration of surfactants the droplets pressure drop was reduced significantly. Moreover, the type of surfactant affected the magnitude of the pressure drop. Experimental results indicate that if the concentration of surfactants was very low (below CMC) it did not have an effect on the droplet excess pressure. These findings are important to consider in designing droplet microfluidic systems with complex channel networks that involve droplet sorting, splitting, and merging for droplets that contain surfactants.
75

A Theoretical Analysis of Microchannel Flow Boiling Enhancement via Cross-Sectional Expansion

January 2011 (has links)
abstract: Microchannel heat sinks can possess heat transfer characteristics unavailable in conventional heat exchangers; such sinks offer compact solutions to otherwise intractable thermal management problems, notably in small-scale electronics cooling. Flow boiling in microchannels allows a very high heat transfer rate, but is bounded by the critical heat flux (CHF). This thesis presents a theoretical-numerical study of a method to improve the heat rejection capability of a microchannel heat sink via expansion of the channel cross-section along the flow direction. The thermodynamic quality of the refrigerant increases during flow boiling, decreasing the density of the bulk coolant as it flows. This may effect pressure fluctuations in the channels, leading to nonuniform heat transfer and local dryout in regions exceeding CHF. This undesirable phenomenon is counteracted by permitting the cross-section of the microchannel to increase along the direction of flow, allowing more volume for the vapor. Governing equations are derived from a control-volume analysis of a single heated rectangular microchannel; the cross-section is allowed to expand in width and height. The resulting differential equations are solved numerically for a variety of channel expansion profiles and numbers of channels. The refrigerant is R-134a and channel parameters are based on a physical test bed in a related experiment. Significant improvement in CHF is possible with moderate area expansion. Minimal additional manufacturing costs could yield major gains in the utility of microchannel heat sinks. An optimum expansion rate occurred in certain cases, and alterations in the channel width are, in general, more effective at improving CHF than alterations in the channel height. Modest expansion in height enables small width expansions to be very effective. / Dissertation/Thesis / M.S. Mechanical Engineering 2011
76

Microusinagem de dielétricos com pulsos laser de femtossegundos / Micromachining of dieletrics with femtosecond laser pulses

MACHADO, LEANDRO M. 09 October 2014 (has links)
Made available in DSpace on 2014-10-09T12:34:59Z (GMT). No. of bitstreams: 0 / Made available in DSpace on 2014-10-09T14:04:28Z (GMT). No. of bitstreams: 0 / Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) / Tese (Doutoramento) / IPEN/T / Instituto de Pesquisas Energeticas e Nucleares - IPEN-CNEN/SP / FAPESP:08/00284-0
77

Détection électrochimique de gradients de concentration ou de gouttes générés à l'intérieur d'un canal microfluidique : approche théorique et expérimentale / Electrochemical detection of concentration gradients and droplets generated within microfluidic channel : theoretical and experimental approaches

Abadie, Thomas 29 September 2016 (has links)
L'électrochimie permet la mise en œuvre de techniques de détections pertinentes et adaptées aux contraintes de miniaturisation imposées par la conception de laboratoires sur puce. L'objectif de la thèse a été d'étudier la détection d'espèces électroactives circulant à l'intérieur d'un canal microfluidique, sous la forme de gradients de concentration localisés, ou d'espèces contenues à l'intérieur de gouttes. Pour cela, deux approches ont été menées au moyen d'électrodes microbandes intégrées dans des microcanaux. La première a été d'étudier la possibilité de générer puis de détecter électrochimiquement de façon contrôlée des gradients de concentration en écoulement monophasique. Les réponses ampérométriques ont été analysées en fonction des caractéristiques des gradients de concentration après les phases de génération et de propagation. Deux comportements limites ont été mis en évidence par simulations numériques puis vérifiés expérimentalement. La seconde approche a été de mettre en œuvre une détection électrochimique du contenu de gouttes en écoulement diphasique. L'enjeu a été à la fois de démontrer la faisabilité des mesures mais aussi d'établir des relations entre les courants mesurés et les concentrations ou quantités d'espèces à l'intérieur des gouttes. Dans ce cadre, un microdispositif innovant a été proposé puis testé expérimentalement, démontrant la possibilité d'effectuer des électrolyses totales de gouttes. / Electrochemistry enables the implementation of relevant and appropriate detection techniques to the miniaturization constraints imposed by the design of labs-on-a-chip. The aim of this thesis was to study the detection of electroactive species flowing within microfluidic channels under the form of concentration gradients or microdroplets. Therefore, two approaches were undertaken by means of microband electrodes integrated within microchannels. The first one was to study the opportunity to control the electrochemical generation and detection of concentration gradients in continuous flow. The amperometric responses were analyzed as a function of the characteristics of concentration gradients after the generation and propagation processes. Two boundary behaviours were evidenced by numerical simulations and validated experimentally. The second approach was to implement the electrochemical detection of droplet content in segmented flow. The challenge was both to demonstrate the feasibility of the experiments and to introduce relationships between currents and concentration or amount of species inside droplets. In this context, an innovative microdevice was designed and tested experimentally allowing the total electrolysis of the droplets.
78

Microusinagem de dielétricos com pulsos laser de femtossegundos / Micromachining of dieletrics with femtosecond laser pulses

MACHADO, LEANDRO M. 09 October 2014 (has links)
Made available in DSpace on 2014-10-09T12:34:59Z (GMT). No. of bitstreams: 0 / Made available in DSpace on 2014-10-09T14:04:28Z (GMT). No. of bitstreams: 0 / Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) / Neste trabalho foi utilizado o método de regressão do diâmetro para a medida do limiar de ablação nos materiais Suprasil, BK7, Safira e Ti:Safira por pulsos de femtossegundos. Através de medidas dos limiares de ablação para pulsos únicos e pulsos sobrepostos, quantificou-se o parâmetro de incubação para cada dielétrico. Essas medidas preliminares serviram para validação do método denominado Diagonal Scan ou D-scan. Para tanto, o método D-scan teve seu formalismo expandido o que possibilitou a quantificação da sobreposição de pulsos durante o seu uso. A simplicidade e rapidez do método D-scan permitiram que o limiar de ablação no BK7 fosse medido para diferentes larguras temporais e sobreposições. O limiar de ablação para pulsos únicos em função da largura temporal dos pulsos foi comparado com uma simulação teórica. A partir do conhecimento do parâmetro de incubação desenvolveu-se uma metodologia de usinagem em dielétricos que considera a sobreposição de pulsos durante a ablação. Isso permitiu a fabricação de microcanais para uso em microfluídica em BK7. / Tese (Doutoramento) / IPEN/T / Instituto de Pesquisas Energeticas e Nucleares - IPEN-CNEN/SP / FAPESP:08/00284-0
79

Transferência de calor e perda de pressão durante a ebulição convectiva de hidrocarbonetos em um dissipador de calor baseado em multi-microcanais / Heat transfer and pressure drop of hydrocarbon refrigerants during flow boiling in a microchannel array heat sink

Cristian Alfredo Chávez Toro 08 September 2016 (has links)
A presente tese envolve um estudo experimental da ebulição convectiva no interior de um dissipador de calor baseado em multi-microcanais. Resultados experimentais para perda de pressão e coeficiente de transferência de calor foram levantados para os hidrocarbonetos R600a (isobutano), R290 (propano) e R1270 (propileno), fluidos com reduzido GWP (Global Warming Potential) e ODP (Ozone Depletion Potential) nulo. O desempenho termo-hidráulico destes fluidos foi avaliado em um dissipador de calor de cobre, contendo cinquenta canais paralelos com seção transversal retangular de 123x494 µm2 , 15 mm de comprimento e área de base de 15x15 mm2. Os experimentos foram realizados para fluxos de calor de até 400 kW/m2, velocidade mássica variando entre 165 e 823 kg/m2s, graus de sub-resfriamento do líquido na entrada da seção de testes de 5, 10 e 15°C e temperaturas de saturação de 21 e 25°C. Os dados experimentais foram amplamente analisados e discutidos, focando o efeito do fluido refrigerante. Oscilações dos sinais de temperatura e pressão foram analisadas parametricamente visando caracterizar efeitos de instabilidades térmicas. Adicionalmente, realizou-se análise comparativa de desempenho dos refrigerantes baseada na 2ª Lei da Termodinâmica. Os dados para hidrocarbonetos foram comparados com resultados de trabalhos prévios para o refrigerante R134a levantados na mesma seção de testes e utilizando a mesma bancada experimental. A partir destes dados, conclui-se que os hidrocarbonetos proporcionam coeficientes de transferência de calor superiores ao R134a. Em geral, o coeficiente de transferência de calor apresenta a seguinte ordem decrescente: R290, R1270, R600a e R134a. No entanto, o R290 necessitou superaquecimentos da parede superiores ao R1270 para iniciar o processo de ebulição. O refrigerante R1270 proporcionou perdas de pressão totais inferiores aos demais fluidos segundo a seguinte ordem decrescente: R600a, R134a, R290 e R1270. O refrigerante R1270 apresentou frequências de oscilação inferiores na temperatura da câmara de saída. Baseado na análise de desempenho da 2ª Lei da Termodinâmica, conclui-se que, as irreversibilidades devido ao processo de transferência de calor foram predominantes quando comparadas àquelas devido à perda de pressão. Através desta análise também constatou-se o melhor desempenho para o refrigerante R290. / The present thesis concerns an experimental study on flow boiling inside a microchannel array. Experimental results for two-phase pressure drop and heat transfer coefficient were acquired for the hydrocarbons R600a (isobutane), R290 (propane) and R1270 (propylene). These fluids present low Global Warming Potential (GWP) and null Ozone Depletion Potential (ODP). The cooling performance of these hydrocarbons were evaluated for a copper heat sink containing fifty parallel microchannels. The microchannels are rectangular with cross section of 123x494 µm2, 15 mm length and a footprint area of 15x15 mm2. The experimental evaluation was performed in a test facility located at the Laboratory of Thermal and Fluid Engineering of School of Engineering of São Carlos, University of Sao Paulo. The experiments were performed for heat fluxes up to 400 kW/m2, mass velocities from 165 to 823 kg/m2s, degrees of liquid subcooling at the test section inlet of 5, 10 and 15°C and saturation temperatures of 21 and 25°C. The experimental data were carefully analyzed and discussed focusing on the effects of the fluid on the heat sink thermal hydraulic performance. Fluctuations in the temperature and pressure were analyzed parametrically in order to evaluate thermal instability effects. Additionally, an exergy analysis was performed to evaluate the refrigerant efficiency during convective evaporation. Subsequently, the parametric effects and performance of hydrocarbons were compared with previous results for refrigerant R134a obtained in the same test facility and under the same experimental conditions. The refrigerant R290 provided heat transfer coefficients higher than R600a and R1270. However, R290 needed a degree of wall superheating for the onset of nucleate boiling higher than R1270. Based on the exergy analysis it was concluded that, the irreversibility associated to the heat transfer process are predominant compared with the irreversibility due to the pressure drop. According to the Second Law analyses it was also concluded R290 as the fluid providing the best performance.
80

Two-Phase Flow in Microchannels with Application to PEM Fuel Cells

Wu, Te-Chun 24 April 2015 (has links)
The performance of PEM fuel cells (PEMFC) relies on the proper control and management of the liquid water that forms as a result of the electrochemical process, especially at high current densities. The liquid water transport and removal process in the gas flow channel is highly dynamic and many of its fundamental features are not well understood. This thesis presents an experimental and theoretical investigation of the emergence of water droplets from a single pore into a microchannel. The experiments are performed in a 250 µm × 250 µm air channel geometry with a single 50 µm pore that replicates a PEMFC cathode gas channel. A droplet manipulation platform is constructed using a microfluidics soft lithographic process to allow observation of the dynamic nature of the water droplets. Flow conditions that correspond to typical operating conditions in a PEMFC are selected. A test matrix of experiments comprised of different water injection velocities and air velocities in the gas microchannel is studied. Emergence, detachment and subsequent dynamic evolution of water droplets are analyzed, both qualitatively and quantitatively. Quantitative image analysis tools are implemented and applied to the time-resolved images to document the time evolution of the shape and location of the droplets, characteristic frequencies, dynamic contact angles, flow regime and stability maps. Three different flow regimes are identified, slug, droplet, and film flow. The effects of the air flow rate and droplet size on the critical detachment conditions are also investigated. Numerical simulations using Volume-of-Fluid method are presented to investigate the water dynamics in the droplet flow. The focus of the modeling is on methods that account for the dynamic nature of the contact line evolution. Results of different approaches of dynamic contact angle formulations derived empirically and by using the theoretically based Hoffmann function are compared with the static contact angle models used to date. The importance of the dynamic formulation as well as the necessity for high numerical resolution is highlighted. The Hoffmann function implementation is found to better capture the salient droplet motion dynamics in terms of advancing and receding contact angle and periodicity of the emergence process. To explore the possibility of using the pressure drop signal as a diagnostic tool in operational fuel cells that are not optically accessible, a flow diagnostic tool was developed based on pressure drop measurements in a custom designed two-phase flow fixture with commercial flow channel designs. Water accumulation at the channel outlet was found to be the primary cause of a low-frequency periodic oscillation of pressure drop signal. It is shown that the flow regimes can be characterized using the power spectrum density of the normalized pressure drop signal. This is used to construct a flow map correlating pressure drop signals to the flow regimes, and opens the possibility for practical flow diagnostics in operating fuel cells. / Graduate

Page generated in 0.0439 seconds