Spelling suggestions: "subject:"microfluidique een gouttes"" "subject:"microfluidique een goutte""
1 |
Characterizing the antibody response at the single cell level with droplet microfluidics / Caractérisation de la réponse anticorps à l’échelle de la cellule unique avec la microfluidique en gouttelettesCastrillon, Carlos 14 September 2018 (has links)
Les anticorps sont des protéines en forme de Y, trouvées comme composant du sérum circulant, qui aident le système immunitaire à cibler et à répondre aux agents pathogènes et aux molécules étrangères, mais peuvent aussi contribuer à la maladie en réagissant aux protéines constitutives. Les anticorps sont produits par des Plasmocytes, qui les sécrètent dans la circulation. Parce qu'il n'y a pas de lien physique entre les plasmocytes et leurs anticorps sécrétés, la détection d'anticorps spécifiques d’un antigène est problématique. Dans cette thèse, j'explore l'utilisation de la microfluidique en gouttelettes pour générer et manipuler des compartiments aqueux homogènes dans lesquels des cellules sécrétant anticorps peuvent être isolées et analysées à haut débit a'échelle d'une seule cellule. Pour caractériser les cellules sécrétant des anticorps à l'intérieur des gouttelettes, j'utilise un nouveau test qui permet d'interroger les cellules en fonction de la spécificité de leur sécrétion. Ces compartiments de gouttelettes peuvent être triés pour le séquençage d'anticorps, ou analysés au cours du temps pour obtenir des informations cinétiques de l'interaction anticorps-antigène à l'intérieur de chaque gouttelette. En utilisant une nouvelle technologie, j'ai pu obtenir le répertoire d'anticorps de souris immunisées contre deux antigènes différents à partir de cellules sécrétant des anticorps spécifiques d’un antigène, avec des capacités égales ou supérieures aux technologies disponibles actuelles. Aussi, j'ai pu suivre le processus de maturation d'affinité des anticorps à l'échelle de la cellule unique, à la fois dans l'immunisation et la maladie auto-immune. Avec ces outils, je démontre comment la microfluidique peut être utilisée pour caractériser les réponses immunitaires et auto-immunes à travers l'évaluation de cellules sécrétant des anticorps. / Antibodies are Y shaped proteins, found as a component of circulating serum, that help the immune system target and respond to pathogens and foreign molecules, but can also contribute to disease when reacting to constitutive self-proteins. Antibodies are produced Plasma Cells, which secrete them into circulation. Because there’s no physical link between Plasma Cells and their secreted antibodies, the detection of antigen-specific antibodies is problematic. In this thesis I explore the use of droplet microfluidics to generate and manipulate homogeneous aqueous compartments in which single antibody secreting cells can be isolated and analyzed in a high-throughput manner. To characterize single antibody secreting cells inside the droplets I use a novel assay that allows to interrogate cells based on the specificity of their secretion. These droplet compartments can be sorted for single cell antibody sequencing, or analyzed over time to obtain kinetic information of the antibody-antigen interaction inside each droplet. Using new established technology I was able to obtain the antibody repertoire of mice immunized against two different antigens from single antigen-specific antibody secreting cells, with equal or better capacities than current available technologies. Also, I was able to follow the affinity maturation process of antibodies at the single-cell level, both in immunization and autoimmune disease. With these tools I demonstrate how microfluidics can be used to characterize the immune and the autoimmune responses through the evaluation of single antibody secreting cells.
|
2 |
Développement de sondes et de systèmes microfluidiques pour la détection de nouveaux biomarqueurs spécifiques / Development of probes and microfluidic systems for the detection of new specific biomarkersBartolo, Jean-François 22 September 2014 (has links)
L’efficacité des traitements contre diverses pathologies dépend dans bien des cas de la précocité de la prise en charge des patients. Ce contexte pousse de nos jours les chercheurs à élaborer de nouvelles méthodes de diagnostic, généralement basées sur la détection de biomarqueurs spécifiques, permettant d’établir une corrélation entre un dérèglement moléculaire de l’organisme et la survenue d’une maladie. L’objectif de ces travaux était, par l’utilisation de la microfluidique digitale en gouttelettes, d’établir de nouvelles procédures simples et reproductibles, témoignant d’une sensibilité importante afin de déterminer d’infimes variations de l’état moléculaire de l’organisme à travers la recherche de biomarqueurs spécifiques. Pour cela nous avons élaboré une nouvelle gamme de tensioactifs fluorées adaptés aux applications biologiques en microfluidique digitale, ainsi que différentes stratégies d’étude des variations de l’expression de microARN extrait d’échantillons biologiques, basées respectivement sur les réactions induites par hybridation nucléotidique et sur la réaction de RT-PCR digitale. / Efficiency of treatments for various diseases depends in many cases in precocity of patient management. Nowadays, this context urges researchers to develop new methods of diagnosis, generally based on the detection of specific biomarkers. These new methods allowing to establish correlations between physiological disorders and arisen of diseases states.The aim of this study was, by the use of droplet-based microfluidic, to work out a simple and reproducible procedure, with an increased sensitivity, to determine tiny variations of physiological state through the detection of specific biomarkers. Thus, we developed a new range of fluorinated surfactants fitted to biological applications in droplet-based microfluidics as well as various strategies to study variations of microRNA expressions in a biological sample. These methods, based on DNA-template reaction and digital PCR reaction, allows performing a substantial number of simultaneous reactions in micro-compartments (microdroplets) of picolitre volumes.
|
3 |
Amélioration et criblages de propriétés d'ARN aptamères fluorogènes en systèmes microfluidiques / Screening and improving light-up RNA aptamer properties using droplet-based microfluidicsAutour, Alexis 17 September 2018 (has links)
Les ARN (Acide RiboNucléique) remplissent de nombreuses fonctions clés dans le vivant. Ils peuvent être support de l'information génétique, régulateurs de celle-ci. Visualiser ces molécules au sein d'une cellule représenterait une étape importante vers une meilleure compréhension de la régulation de l'expression des gènes. Les ARN fluorogènes tels que Spinach et Mango sont des outils extrêmement prometteurs pour atteindre cet objectif. Cependant ces deux ARN fluorogènes présentent une brillance limitée. La Compartimentation in vitro assistée par microfluidique (µCIV) est un outil très prometteur dont notre groupe a démontré l’efficacité pour l’évolution d’ARN. Dans le cadre de cette thèse, la µCIV a été adaptée à la sélection d'aptamères d'ARN fluorogènes pour en améliorer les propriétés (surtout la brillance). De plus, l’utilisation conjointe du séquençage haut débit a permis l’optimisation très rapide et semi-automatisée à la fois d’aptamères mais aussi de biosenseurs fluorogènes. Ainsi, cette thèse a permis de mettre en place et d’exploiter des technologies de criblage robustes pour la découverte de nouveaux aptamères d'ARN et de biosenseurs. / RNA is a key molecule in gene expression and its regulation. Therefore, being able to monitor RNA through live-cell imaging would represent an important step toward a better understanding of gene expression regulation. RNA-based fluorogenic modules are extremely promising tools to reach this goal. To this end, two light-up RNA aptamers (Spinach and Mango) display attractive properties but they suffer from a limited brightness. Since previous work in the group demonstrated the possibility to evolve RNA using microfluidic-assisted in vitro compartmentalization (µIVC), this technology appeared to be well suited to improve light-up aptamers properties by an evolution strategy. Therefore, the µIVC procedure was adapted to fluorogenic RNA aptamers to improve their properties (especially the brightness). Finally, using µIVC in tandem with high-throughput sequencing (NGS) allowed further developing the technology into a more integrated and semi-automatized approach in which RNAs and biosensors are selected by µIVC screening and the best variants identified by a bioinformatics process upon NGS analysis. To summarize, this thesis allowed establishing robust µIVC screening workflows for the discovery of novel efficient light-up RNA aptamers as well as metabolites biosensors.
|
4 |
Droplet-based microfluidics for the genotype-phenotype mapping of model enzymes / Microfluidique en gouttelettes pour la cartographie génotype-phénotype d’enzymes modèlesChauvin, Dany 29 September 2017 (has links)
La relation qui lie la séquence d'une protéine à sa fonction nous échappe toujours en grande partie, pourtant elle est essentielle à la compréhension de l'évolution moléculaire.La microfluidique permet de remplacer les traditionnels tubes à essais par des micro-gouttelettes afin de tester séparément des mutants d'enzyme à des fréquences de l'ordre du kilohertz. Cette technique fournit un moyen de coupler le génotype et le produit de l'activité enzymatique (phénotype). Sélectionner et récupérer les gouttelettes sur demande et séquencer leur contenu permet d'effectuer la cartographie génotype-phénotype de millions de mutants d'enzymes en une seule expérience.Au cours de cette thèse, j'ai tout d'abord développé un système microfluidique basé sur l'expression de protéines in vitro afin de pouvoir réaliser la cartographie génotype-phénotype de Streptomyces griseus aminopeptidase (SGAP). Des gènes mutants de l'enzyme SGAP sont encapsulés (un par gouttelette au maximum) amplifiés, exprimés et testés contre un substrat fluorogénique. Des incompatibilités entre les étapes d'amplification, d'expression et d'essai enzymatique en gouttelettes obligent à réaliser chacune de ces étapes séparément et successivement, afin de diluer le produit de chaque réaction par l'électro-coalescence des gouttelettes. Je montre qu'un work-flow microfluidique dans lequel (i) les gènes sont encapsulés et amplifiés dans des gouttes de 0.2 pL, (ii) exprimés in vitro, (iii) testés contre un substrat fluorogenique dans des gouttelettes de 20 pL, permet de mesurer l'activité de variants de SGAP avec un contraste important. Afin d'optimiser l'essai enzymatique en gouttelettes de SGAP, j'ai aussi développé, en collaboration avec Dr. Johan Fenneteau (Laboratoire de Chimie Organique, ESPCI Paristech), un nouveau substrat fluorogénique basé sur une rhodamine hydrophile. Cette sonde est caractérisée par un échange limité de la rhodamine entre les gouttelettes.J'ai ensuite développé un work-flow microfluidique in vivo, pour Ratus norvegicus trypsin (la trypsine du rat), dans lequel les capacité de sécrétion de Bacillus subtilis sont utilisées afin de simplifier les expériences. Des cellules uniques de B. subtilis sont encapsulées dans des gouttelettes de 20 pL où elles sécrètent des mutants de la trypsine en protéine de fusion avec un rapporteur permettant de mesurer le niveau d'expression. Les mutants sont testés par électro-coalescence avec des gouttelettes de 2 pL contenant un substrat fluorogénique de la trypsine. En normalisant l'activité totale détectée par la fluorescence du rapporteur du niveau d'expression, l'efficacité catalytique peut être directement mesurée en gouttelettes. C'est la première fois qu'un système expérimental d'essai enzymatique haut-débit fournit l'opportunité de mesurer directement l’efficacité catalytique de mutants d'une enzyme à une fréquence de l'ordre du kilo Hertz. Une méthode afin de réaliser la mutagenèse saturée (tous les simples mutants) du gène de la trypsine du rat a aussi été développée. Combinée au séquençage nouvelle génération, la méthode microfluidique développée permettra de réaliser la première cartographie génotype-phénotype de tous les simples mutants de la trypsine du rat / The question of how sequence encodes proteins' function is essential to understand molecular evolution but still remains elusive.Droplet-based microfluidics allows to use micro-metric droplets as reaction vessels to separately assay enzyme variants at the kHz frequency. It also provides an elegant solution to couple the genotype with the product of the catalytic activity of enzymes. Sorting droplets on demand and sequencing their content enables to map the genotype of millions of enzyme variants to their phenotype in a single experiment.First, I developed a cell-free microfluidic work-flow to carry out genotype-phenotype mapping of Streptomyces griseus aminopeptidase (SGAP). Single enzyme variant genes are encapsulated and amplified in droplets, expressed, and assayed against a fluorogenic substrate. Incompatibilities between gene amplification, expression and assay reactions, constrain to execute each one of those steps successively and to dilute the product of each reaction by droplet electro-coalescence. I show that a work-flow in which (i) genes are encapsulated and amplified into 0.2 pL droplets, (ii) expressed using cell-free expression reagents in 2 pL droplets and (iii) assayed with a fluorogenic substrate in 20 pL droplets, allows to measure SGAP variants activity with high contrast. To optimize the SGAP droplet assay, I also developed in collaboration with Dr. Johan Fenneteau (Laboratory of Organic Chemistry, ESPCI Paristech), a hydrophilic rhodamine based substrate, characterized by limited exchange of the released fluorophore between droplets.Second, I developed an in vivo microfluidic work-flow on Ratus norvegicus trypsin (rat trypsin), in which Bacillus subtilis secretion abilities are used to simplify the microfluidic work-flow. Single B. subtilis cells are encapsulated in 20 pL droplets where they secrete trypsin variants as fusion proteins with a fluorescent expression-level reporter. The variants are assayed by droplet electro-coalescence with 2 pL droplets containing a trypsin fluorogenic substrate. Trypsin variants catalytic efficiency can be directly measured in droplets, by normalizing the total trypsin activity by the expression-level reporter fluorescence. This is the first time a high-throughput protein assay work-flow gives the opportunity to directly measure the catalytic efficiency of enzyme variants at the kHz frequency. A method to carry out saturated mutagenesis on the rat trypsin gene was also developed. Together with deep sequencing, the developed experimental work-flow will allow to perform the first quantitative genotype-phenotype mapping of all single point mutants of the rat trypsin protein
|
5 |
In vivo and in vitro directed evolution of enzymes using droplet-based microfluidics / Evolution dirigée d'enzymes in vivo et in vitro par microfluidique de gouttelettesGodina, Alexei 01 February 2013 (has links)
L’ingénierie des protéines fonctionnelles est un processus d’amélioration des propriétés physiques ou catalytiques d’enzyme au travers d’approches rationnelles et d'évolution dirigée, aussi bien que la combinaison des deux méthodes. Malgré le progrès de la modélisation moléculaire des protéines, les méthodes de prédiction restent aléatoires et un grand nombre de variantes restent à tester. De ce fait, le développement et l’utilisation d’un système de criblage d’activité de protéines à très haut débit, comme la microfluidique en gouttes, est indispensable. Cette thèse de doctorat présente trois projets d’évolution dirigée de protéines en trois approches différentes avec expression d’enzyme in vitro et in vivo. Les plateformes microfluidiques ont été développées et validées pour chaque projet. De plus, plusieurs banques de variants ont été criblées avec, dans certains cas, isolement de molécules 5-10 fois que le clone parental. / This work describes the development of high-throughput droplet microfluidic platforms fine-tuned for protein of interest and their employment in directed evolution experiments. When not available, fluorogenic assay for monitoring desired enzyme activity (-ies) in droplets was developed. Moreover, the in vivo expression allowed the successive integration of microfluidic modules on the same chip. After a couple of evolution rounds the initial retro-aldolase variant was significantly improved. In other project, to meet industrial requirements a high-throughput screening platform for protease evolution in detergent has been assembled and validated. Two evolution rounds showed the accumulation of a certain pool of beneficial mutations over the selection rounds. The research described in this work highlighted that in vitro expression systems are sensitive to the amount of supplied DNA and reaction conditions. This observation led to the development of a multistep completely in vitro microfluidic platform.
|
6 |
Development of droplet-based microfluidic technology for high-throughput single-cell phenotypic screening of B cell repertoires / Développement de la technologie de microfluidique en gouttelettes pour le criblage phénotypique à haut débit à l'échelle de la cellule unique de répertoires de lymphocytes BDoineau, Raphaël 19 September 2017 (has links)
Le système immunitaire adaptatif joue un rôle de premier plan dans la défense contre les infections. La réponse humorale, impliquant la production d'anticorps, est un élément important de la réponse immunitaire adaptative. Au cours d'une infection, des cellules B spécifiques du système immunitaire prolifèrent et libèrent de grandes quantités d'anticorps qui se lient sélectivement à la protéine cible (antigène) trouvée sur le pathogène invasif, induisant la destruction du pathogène.Cependant, le système immunitaire ne répond pas toujours suffisamment efficacement pour détruire les agents pathogènes, et les mécanismes de tolérance empêchent la génération d'anticorps contre les protéines humaines - comme les marqueurs de surface cellulaire sur les cellules cancéreuses ou les cytokines impliquées dans des maladies inflammatoires et auto-immunes - qui pourraient être des cibles thérapeutiques importantes. Par conséquent, il existe un grand intérêt pour la recherche et le développement d'anticorps spécifiques qui peuvent être utilisés pour le traitement des patients par immunothérapie. En raison de leur grande affinité et de leur liaison sélective aux antigènes, les anticorps monoclonaux (mAbs) sont apparus comme des agents thérapeutiques puissants. Les anticorps monoclonaux dérivés de cellules B individuelles ont une séquence unique et présentent une affinité de liaison pour un antigène spécifique. Cependant, jusqu'à maintenant, la découverte des mAbs a été limitée par l'absence de méthodes à haut débit pour le criblage direct et à grande échelle de cellules B primaires non immortalisées pour découvrir les rares cellules B qui produisent des anticorps spécifiques d'intérêt clinique. Ceci est maintenant possible avec l'émergence et l'amélioration des méthodes de compartimentation in vitro pour l'encapsulation et le criblage de cellules uniques dans des gouttelettes picolitriques. Dans mon projet de doctorat, je décris le développement d'immunodosages et de dispositifs microfluidiques pour le criblage phénotypique direct de cellules individuelles à partir de populations de cellules B enrichies. Ce développement a permis une analyse détaillée de la réponse immunitaire humorale, avec une résolution à l’échelle de la cellule unique. C’est aussi un élément essentiel d'un pipeline de détection d'anticorps couplant le criblage phénotypique de cellules individuelles au séquençage d'anticorps sur cellules uniques. Il est maintenant possible, pour la première fois, de cribler des millions de cellules B individuelles en fonction de l'activité de liaison des anticorps sécrétés et de récupérer les séquences d'anticorps / The adaptive immune system plays a leading role in defense against infection. The humoral response, involving the production of antibodies, is an important component of the adaptive immune response. During an infection, specific B cells of the immune system proliferate and release large amounts of antibodies which bind selectively to the target protein (antigen) found on the invading pathogen, inducing destruction of the pathogen. However, the immune system does not always respond efficiently enough to destroy pathogens, and tolerance mechanisms prevent the generation of antibodies against human protein - such as cell surface markers on cancer cells or cytokines involved in inflammatory and autoimmune disease - that could be important therapeutic targets. Hence, there is great interest in research and development of specific antibodies that can be used for immunotherapy of patients. Due to their high affinity and selective binding to antigens, monoclonal antibodies (mAbs) have emerged as powerful therapeutic agents. Monoclonal antibodies derived from single B cells have a unique sequence and display binding affinity for a specific antigen. However, until now, the discovery of mAbs has been limited by the lack of high-throughput methods for the direct and large-scale screening of non-immortalized primary B cells to uncover rare B cells which produce the specific antibodies of clinical interest. This is now becoming possible with the emergence and improvement of in vitro compartmentalization methods for single-cell encapsulation and screening in picoliter droplets. In my PhD project, I describe the development of binding immunoassays and microfluidic devices for the direct phenotypic screening of single-cells from enriched B cell populations. This development has enabled detailed analysis of the humoral immune response, with single-cell resolution and is an essential component of an antibody-discovery pipeline coupling single-cell phenotypic screening to single-cell antibody sequencing. It is now possible, for the first time, to screen millions of single B cells based on the binding activity of the secreted antibodies and to recover the antibody sequences
|
Page generated in 0.0629 seconds