Spelling suggestions: "subject:"microglia."" "subject:"microglial.""
131 |
O papel da polarização de macrófagos no transtorno bipolarAscoli, Bruna Maria January 2017 (has links)
A disfunção do sistema imune inato e a neuroinflamação tem sido cada vez mais reconhecidas como elementos importantes na fisiopatologia do transtorno bipolar (TB). Como componentes essenciais da imunidade inata, os macrófagos tem múltiplas funções tanto na inibição como na promoção da proliferação celular e na reparação tecidual, sendo a diversidade e a plasticidade características marcantes deste tipo celular. A polarização M1 clássica e a polarização alternativa M2 de macrófagos representam dois extremos de um estado dinâmico na mudança da ativação dos mesmos. Os macrófagos do tipo M1 sintetizam citocinas próinflamatórias que inibem a proliferação de células circundantes e danificam tecidos, enquanto os macrófagos do fenótipo M2 liberam citocinas antiinflamatórias que podem promover reparo tecidual. Um desequilíbrio da polarização M1-M2 dos macrófagos é frequentemente associado a várias doenças ou condições inflamatórias. O objetivo desta tese foi, além de revisar a importância da inflamação sistêmica na modulação da resposta inflamatória da microglia/macrófagos e consequentemente seu potencial envolvimento na fisiopatologia do TB, avaliar o perfil de polarização M1/M2 em cultura de macrófagos de sujeitos com TB comparados a indivíduos saudáveis. Monócitos foram isolados a partir de sangue periférico de dez sujeitos com TB e dez indivíduos saudáveis e diferenciados em macrófagos através da adição de fator estimulante de colônia de macrófagos (MCSF) ao meio de cultura. Para induzir a polarização M1 ou M2, as culturas foram incubadas com IFN-y e LPS ou IL-4 respectivamente. Após a incubação, recolheram-se os sobrenadantes e mediram-se as citocinas (IL-1β, IL-6, IL-10 e TNF-α) por ensaio multiplex. A secreção das citocinas IL-1β, TNF-α e IL-6 características do protótipo M1 e citocinas IL-10 do protótipo M2 foram semelhantes entre os pacientes e os controles. Utilizou-se a razão TNF-α / IL-10 do fenótipo M1 para refletir o estado inflamatório dos participantes. Não foi observada diferença entre os grupos (p=0,627). Duas hipóteses diferentes poderiam explicar esses resultados: todos os pacientes incluídos neste estudo representam um estágio inicial da doença como evidenciado pela pontuação FAST total inferior a 11. De acordo com o modelo de estadiamento em TB, as alterações biológicas (incluindo a inflamação) parecem estar relacionadas com os episódios de humor e progressão da doença. Juntamente com estudos anteriores, os nossos dados sugerem que os pacientes nos estágios iniciais ainda preservam a função do sistema imunológico sem apresentar um desequilíbrio a favor do perfil de macrófagos M1 como tem sido observado em pacientes no estágio tardio, destacando a relevância da intervenção precoce no TB. Ainda, estes pacientes estavam em tratamento com estabilizadores de humor e é plausível especular que esses fármacos exerçam efeitos sobre a polarização de macrófagos. Estudos futuros em pacientes drug-free são essenciais para avaliar esta questão. Em conclusão, nossos achados sugerem que os pacientes TB não apresentam desequilíbrio na polarização dos macrófagos em favor do fenótipo pró-inflamatório M1. O fato de todos estes pacientes estarem em estágios iniciais da doença reforça os efeitos protetores da intervenção precoce no TB na prevenção de alterações do sistema imune e, consequentemente, na progressão da doença. / Innate immune system dysfunction and neuroinflammation have been recognized as important elements in the pathophysiology of bipolar disorder (BD). As essential players of innate immunity, macrophages have multiple roles in inhibition and promotion of cell proliferation and tissue repair. The classical M1 polarization and the M2 alternative polarization of macrophages represent two extremes of a dynamic state in their change of activation. M1 macrophages synthesize proinflammatory cytokines that inhibit the proliferation of surrounding cells and damage tissues, whereas macrophages of the M2 phenotype release antiinflammatory cytokines that may promote tissue repair. An imbalance of the M1-M2 polarization of macrophages is often associated with various diseases or inflammatory conditions. The aim of this thesis was to review the importance of systemic inflammation in modulating the inflammatory response of microglia/ macrophages and consequently their potential involvement in the pathophysiology of BD, and also evaluate the M1/M2 polarization profile in macrophages of patients with BD compared to healthy individuals. Blood monocytes were obtained from ten BD patients and ten healthy controls. These cells were activated/polarized into the M1 (IFNγ + LPS) or M2(IL-4) phenotype. Supernatants were collected and the cytokines (IL-1β, IL-6, IL-10 and TNF-α) were measured by multiplex assay. Secretion of the IL- 1β, TNF-α, IL-6 and IL-10 were similar between patients and controls. The TNF-α/IL- 10 ratio of the M1 phenotype was used to reflect the inflammatory state of the participants. There was no difference between groups (p = 0.627). Two hypotheses could explain these results: all patients included in this study represent an early stage of disease as evidenced by the FAST score below 11. According to the BD staging model, biological changes (including inflammation) appear to be related to mood episodes and disease progression. Together with previous studies, our data suggest that patients in early stages of BD still preserve immune system function without presenting an imbalance in favor of M1 macrophages as has been observed in latestage patients, highlighting the relevance of early intervention. Moreover, these patients were under treatment with mood stabilizers and it is plausible to speculate that these drugs have effects on macrophage polarization. Future studies in drug-free patients are essential to assess this issue. In conclusion, our findings suggest that BD patients do not present imbalance in macrophage polarization in favor of the M1 proinflammatory phenotype. The fact that all these patients are in the early stages of the disease reinforces the protective effects of early intervention in BD to prevent changes in the immune system and, consequently, prevent the progression of the disease.
|
132 |
Efeitos da estimulação transcraniana por corrente contínua sobre parâmetros celulares e moleculares do córtex cerebralMoreno, Giselle Machado Magalhães 07 March 2014 (has links)
Submitted by Ramon Santana (ramon.souza@ufpe.br) on 2015-03-13T19:49:52Z
No. of bitstreams: 2
DISSERTAÇÃO Giselle Machado M. Moreno .pdf: 1689109 bytes, checksum: 2d05742bbd9d111da0b3253b85d9846c (MD5)
license_rdf: 1232 bytes, checksum: 66e71c371cc565284e70f40736c94386 (MD5) / Made available in DSpace on 2015-03-13T19:49:53Z (GMT). No. of bitstreams: 2
DISSERTAÇÃO Giselle Machado M. Moreno .pdf: 1689109 bytes, checksum: 2d05742bbd9d111da0b3253b85d9846c (MD5)
license_rdf: 1232 bytes, checksum: 66e71c371cc565284e70f40736c94386 (MD5)
Previous issue date: 2014-03-07 / Conselho Nacional de Desenvolvimento Cientìfico e Tecnológico – CNPq / A estimulação transcraniana por corrente contínua (ETCC) consiste na aplicação de corrente direta de baixa intensidade através do crânio e tem se mostrado eficaz no tratamento de diversas desordens neurológicas e psiquiátricas. Dentre as técnicas de estimulação do sistema nervoso central a ETCC ocupa posição de destaque por ser capaz de modular a excitabilidade cortical com vantagens como: não ser invasiva, ser indolor, de baixo custo, fácil uso e fácil mascaramento na realização de estudos. No entanto, apesar de extensas pesquisas sobre os efeitos da ETCC em diversos estados patológicos, seus mecanismos básicos de ação permanecem desconhecidos. Partindo do entendimento do grande envolvimento glial e de moléculas envolvidas no crescimento axonal na dinâmica de funcionamento das sinapses e excitabilidade cortical, o objetivo deste estudo foi verificar os efeitos da ETCC anódica sobre parâmetros celulares e moleculares relacionados à plasticidade sináptica. Foram utilizados 20 ratos Wistar machos adultos, divididos aleatoriamente em dois grupos: (i) ETCC ativa anódica (E), e (ii) ETCC fictícia, sham (S). Os animais receberam ETCC anódica com intensidade de corrente igual a 400 μA, durante 10 minutos por dia, durante cinco dias consecutivos. Após o tratamento foi feita análise imunohistoquímica para reatividade microglial (Iba1) e astrocitária (GFAP), foram investigadas possíveis alterações teciduais estruturais (HE) e degeneração neuronal (FJC), bem como quantificação da expressão da proteína associada ao crescimento axonal, GAP-43. Os ratos do grupo E apresentaram aumento de ~90% na expressão da proteína GAP-43 em homogenados de todo o córtex cerebral (p = 0.032) e na reatividade microglial por uma extensa área cortical em torno da região estimulada, quando comparados ao grupo S. Não foram observadas alterações anatomopatológicas no tecido nem sinais de astrogliose ou neurodegeneração no córtex cerebral dos animais que receberam ETCC. Conclui-se que os parâmetros de estimulação utilizados no presente estudo são capazes de induzir alterações moleculares e celulares no córtex cerebral de animais saudáveis, na ausência de injúria ao tecido nervoso. É possível que tais efeitos estejam envolvidos em algumas das ações da ETCC sobre a plasticidade sináptica e excitabilidade cortical.
|
133 |
Mass-spectrometry Based Proteomics of Age-related Changes in Murine MicrogliaFlowers, Antwoine 27 March 2017 (has links)
The last century has seen a steady increase in the extension of the average lifespan. This has concomitantly produced higher incidences of age-related chronic degenerative diseases like Alzheimer’s and Parkinson’s diseases. Age is the single greatest risk factor for the development of not just these degenerative conditions but cancer as well. The aged niche undergoes a number of maladaptive changes that allow underlying conditions to present and progress. Exactly which changes, contribute to the progression of which disease is currently an area of intense study. However, these answers often present therapeutic targets for disease prevention. Age is characterized by a progressive loss of tissue function that eventually leads to the death of the organism. At the cellular level, aged tissues are characterized by a loss of resident stem cell populations, senescence, and low-grade inflammation. While aging is heterogeneous in terms of its ultimate effect on tissue function the underlying changes have a degree of overlap. Cells often experience increased oxidative stress and a diminished activity in pathways like NRF2 whose role it is to provide resistance to such stress. Aged cells also have some change in their overall chromatin and nucleosome structure contributing to observable changes in gene expression and regulation. When these disruptions occur in tissues that can affect the larger organism such as the hypothalamus they affect the organism as a whole and contribute to syndromes seen in age such as insulin resistance. The immune system, in particular, is sensitive to both the cell-autonomous and systematic changes that occur with age. Immune and endocrine signaling pathways have a considerable amount of overlap, and mounting evidence points to the role of inflammation in the metabolic syndromes that occur with age. Immune dysfunction in the CNS has a special significance because of the dual roles of microglia. These cells exist not just to protect against foreign invasion but play vital roles in the maintenance of brain architecture and in processes central to cognition like long-term potentiation and the differentiation of stem cells in the hippocampus. The aged microglial phenotype contributes to the decline that occurs normally with age but can also be central to the progression of underlying pathologies including several degenerative diseases. Therapies targeting the maintenance of microglial function with age hold the potential to delay disease onset and possibly preserve cognitive function further into life.
Top-down research approaches are well suited for the study of interactions between complex systems. The rapid improvement of mass spectrometry over the past decade has allowed researchers to examine more complex samples with fewer preparation steps and improved accuracy. This approach has thus far worked very well in the study of aging with the number of “Omics” techniques in aging models increasing rapidly. We use both label-free mass spectrometry and the more traditional real-time PCR to analyze signaling pathways and systems in both tissue homogenates and isolated cells from aged animals. By analyzing inflammatory and neurogenic pathways in animals treated with polyphenolic compounds we were able to postulate that the improved behavioral effect of these compounds is likely related to the decrease of pro-inflammatory cytokines and a restoration of WNT signaling. Proteomic analysis of aged microglia revealed widespread changes in chromatin structure and cellular machinery responsible for the regulation of transcription. In addition, we uncovered a shift in the underlying metabolic state of aged microglia and identified several pathways upstream of these changes. These upstream pathways included mTOR, a well-studied nutrient sensing pathway that plays a role in regulating microglial phenotype. Modulation of identified pathways through the use of both genetic (siRNA) and pharmacological (allosteric inhibitor) was able to recapitulate the aged phenotype in normal cells, confirming the role of these pathways in pathological changes.
|
134 |
Functional properties of microglia in mouse models of Alzheimer’s diseaseSaiepour, Nasrin 24 February 2016 (has links)
No description available.
|
135 |
Systems Regulating and Inducing Dopaminergic Cell Death in Parkinson’s Disease: an Analysis of Signalling Associated with Parkinson's Disease ModelsMount, Matthew P. January 2015 (has links)
Parkinson’s disease (PD) is characterized by the progressive loss of dopamine (DA) neurons in the substantia nigra pars compacta (SNc). Mechanisms regulating this neurodegeneration, however, are unclear. Evidence from PD pathology and models of PD, indicate mitochondrial disfunction triggers several death signalling pathways. Accordingly, in vivo and in vitro mitochondrial stress models of PD were employed to explore the role of two divergent molecular influences on dopaminergic neuronal survival. We examined neuroinflammatory and death signalling pathways arising from MPTP-induced mitochondrial stress.
Interferon-gamma (IFN-ɣ) is a cytokine known to activate cellular components of inflammation, including microglia of the central nervous system (CNS). Results of a screen for cytokines in PD patient plasma revealed elevated levels of IFN-ɣ, suggesting a correlation between IFN-ɣ and PD associated DA cell death. In an MPTP mouse model of PD, germline deletion of IFN-ɣ improved survival of DA neurons and the nigrostriatal system, along with a reduction in microglia activation. Employing a survival co-culture system of neurons and microglia, it was found that neutralizing IFN-ɣ reduced DA cell loss induced by the mitochondrial complex I inhibitor, rotenone. DA cell death required localized microglia, activated through the IFN-ɣ-receptor (IFN-ɣ-R), with DA survival inversely proportional to IFN-ɣ expression, found to be up-regulated following rotenone.
Investigation of the calpain-Cdk5-MEF2 signalling pathway in the MPTP model of DA cell death, motivated an examination of the nuclear orphan receptor, Nur77, following a review of potential MEF2 regulatory targets. MPTP induced a reduction in Nur77 mRNA from basal
ii
levels in SNc tissue, further regulated by ectopic Nur77 expression. These results strengthened our new model of MEF2 Nur77 regulation in DA neurons. In MPP+/MPTP DA survival experiments, loss in germline Nur77 expression presented an elevation in DA neuronal death both in vitro and in vivo, with a greater impairment in the nigrostriatal circuitry in comparison with normal expressing animals and cells. Dopaminergic supersensitivity related to Nur77 deficiency was attenuated with the ectopic expression of AV-Nur77 in vivo.
These opposing mediators of survival yield new mechanisms by which DA neurons die, suggesting a mutitargeting approach to halt the progression of DA cell death.
|
136 |
Translocator protein expression and microglial activation in gliomasSu, Zhangjie January 2013 (has links)
Background: Gliomas are the most frequent primary brain tumours in adults with two main histological subtypes: astrocytoma and oligodendroglioma. Translocator protein (TSPO) is a pro-inflammatory molecule over-expressed predominantly in activated microglia under pathological conditions. In astrocytoma samples, TSPO has also been found to be up-regulated and correlated with the malignancy of the tumours. [11C]-(R)PK11195 is a selective radioligand for the TSPO widely applied in clinical PET studies. We used [11C]-(R)PK11195 PET to investigate in vivo cerebral TSPO expression and microglial activation in patients with gliomas of different histological subtypes and grades. Methods: 24 glioma patients and 10 healthy volunteers underwent volumetric MRI and dynamic [11C]-(R)PK11195 PET scans. Tissue time-activity curves (TACs) were extracted from tumour regions and normal grey and white matter of the brains. Parametric maps of binding potential (BPND) were generated with the simplified reference tissue model. Co-registered MRI/PET was used to guide tumour biopsies. Tumour tissue was quantitatively assessed for TSPO expression and microglial infiltration by immunohistochemistry. Results: Three types of tumour TAC were observed in gliomas (grey matter-like kinetics, white matter-like kinetics and mixed kinetics), which differed between low-grade astrocytomas and low-grade oligodendrogliomas but were independent of the tumour grade. [11C]-(R)PK11195 BPND also differed between the two subtypes of low-grade gliomas, and low-grade gliomas demonstrated lower BPND than high-grade gliomas. 4 cases of high-grade glioma with minor or no contrast enhancement on MRI showed pronounced [11C]-(R)PK11195 binding. Immunohistochemistry confirmed that expression of TSPO correlated with [11C]-(R)PK11195 BPND of the tumour. It was related mainly to expression by neoplastic cells while the contribution from tumour-infiltrating microglia was minimal. When compared with control subjects, increased [11C]-(R)PK11195 BPND was found in patients’ normal appearing cerebral structures, being more prominent in the tumour-bearing than the tumour-free hemisphere. This extra-tumoral [11C]-(R)PK11195 binding was correlated with the duration of epileptic seizures, the symptom shared by the majority of our patients. Conclusions: Gliomas show differences in [11C]-(R)PK11195 kinetics and binding that are related to histological subtype and grade. Neoplastic cells rather than activated microglia are the main cellular sources expressing TSPO and determine the [11C]-(R)PK11195 binding within the tumours. [11C]-(R)PK11195 PET has the potential to detect malignant transformation of non-enhancing gliomas and facilitate the targeting of more aggressive areas in tumour biopsy. The high extra-tumoral [11C]-(R)PK11195 binding indicates widespread microglial activation in otherwise normal appearing cerebral structures of glioma patients. It is associated with epilepsy and could open up novel therapeutic perspectives for seizure control in this patient population.
|
137 |
Altered features of monocytes in adult onset leukoencephalopathy with axonal spheroids and pigmented glia: A clue to the pathomechanism of microglial dyshomeostasis / 神経軸索スフェロイド及び色素性グリアを伴う成人発症白質脳症患者における末梢血単球の変化Hamatani, Mio 23 September 2020 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(医学) / 甲第22737号 / 医博第4655号 / 新制||医||1046(附属図書館) / 京都大学大学院医学研究科医学専攻 / (主査)教授 伊佐 正, 教授 林 康紀, 教授 髙折 晃史 / 学位規則第4条第1項該当 / Doctor of Medical Science / Kyoto University / DFAM
|
138 |
The Effects of Age, Sex and Genotype on Neuroinflammation in Humanized Targeted Replacement APOE miceMhatre-Winters, Isha 23 November 2021 (has links)
No description available.
|
139 |
The TREM2 Receptor Directs Microglial Activity in Neurodegeneration and NeurodevelopmentJay, Taylor Reagan January 2019 (has links)
No description available.
|
140 |
Rôle des récepteurs P2X4 dans la dégradation d’ApoE : implication dans la maladie d’Alzheimer / Involvement of P2X4 receptors in ApoE degradation : implication in Alzheimer diseaseHua, Jennifer 06 November 2019 (has links)
Les récepteurs purinergiques P2X4 (P2X4R) sont des récepteurs canaux exprimés par lesneurones et les microglies du système nerveux central et sont impliqués dans de nombreuxprocessus physiologiques et pathologiques. Des études préliminaires, menées au sein dulaboratoire, ont permis de mettre en évidence une interaction entre P2X4R etl’Apolipoprotéine E (ApoE), ainsi qu’une augmentation d’ApoE dans les macrophages et lesmicroglies provenant de souris déficientes pour P2X4R. Basée sur ces observations, lapremière partie de cette thèse a cherché à caractériser les mécanismes impliquant P2X4R danscet effet. ApoE étant un facteur de risque majeur dans la maladie d’Alzheimer, la deuxièmepartie de cette thèse a été consacrée à étudier l’implication de P2X4R dans cette pathologie.Les résultats présentés montrent que P2X4R module l’activité de la cathepsine B, enzymeresponsable de la dégradation lysosomale d’ApoE. L’utilisation de souris APP/PS1 a permisde montrer que l’absence de P2X4R conduit à une amélioration des capacités mnésiques, unediminution de la concentration de peptide Aβ soluble ainsi qu’à une augmentation d’ApoEmicrogliale.Ces résultats indiquent que P2X4R régule la dégradation d’ApoE par un mécanismedépendant de la cathepsine B, et que son invalidation permet d’améliorer les symptômescognitifs de la maladie d’Alzheimer. / P2X4 receptors (P2X4R) are purinergic ion channels expressed on neurons and microglia inthe central nervous system. They have been widely studied and have been implicated in manyphysiological and pathological processes. Previous studies conducted in the laboratoryrevealed an interaction between P2X4R and the Apolipoprotein E (ApoE), as well as anincrease in ApoE level in primary macrophages and microglia obtained from mice lackingP2X4R. Based on these results, this thesis aimed to decipher the mechanisms underlyingP2X4R regulation of ApoE levels. In addition, ApoE being a major risk factor forAlzheimer’s disease, part of this work investigated potential implications of P2X4R in thispathology.Results show that P2X4R modulates cathepsin B activity, which in turn promotes ApoElysosomal degradation. APP/PS1 mice lacking P2X4R show an increase in cognitiveperformances, a decrease in soluble Aβ peptide and an increase of microglia ApoE level.These results support that P2X4R modulates ApoE degradation in a cathepsin B-dependantmanner and that its invalidation leads to an improvement in Alzheimer’s pathology.
|
Page generated in 0.0289 seconds