• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 66
  • 23
  • 7
  • Tagged with
  • 92
  • 42
  • 22
  • 15
  • 15
  • 12
  • 12
  • 11
  • 10
  • 10
  • 9
  • 9
  • 9
  • 8
  • 8
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
61

Influence de la microglie et du BDNF sur l'induction de la neuroplasticité après un accident vasculaire cérébral ischémique / Microglial and BDNF impact on the induction of the post ischemic neuroplasticity

Madinier, Alexandre 30 September 2011 (has links)
L’émergence de la notion selon laquelle la réponse inflammatoire exercerait des effets bénéfiques dans la pathologie ischémique cérébrale, en particulier au cours de la phase de récupération fonctionnelle nous a conduit à étudier l’implication des cellules microgliales dans le déclenchement des mécanismes de neuroplasticité post-ischémique. Notre étude a été réalisée chez le Rat soumis à une ischémie focale permanente induite par photothrombose. L’activation microgliale a été modulée par un traitement au 3-aminobenzamide (3-AB), un inhibiteur spécifique de la poly(ADP-ribose)polymérase-1, jouant un rôle prépondérant dans l’activation de ces cellules. Nos données montrent que le 3-AB entraîne une diminution importante de l’activation microgliale aux temps courts associée à plus long terme à une réduction de l’expression de la synaptophysine et de GAP-43, respectivement marqueurs des processus de synaptogenèse et croissance axonale. L’ensemble de ces données indique donc que les cellules microgliales constituent effectivement des acteurs cellulaires essentiels de la neuroplasticité post-ischémique. Le Brain-derived neurotrophic factor (BDNF) se révélant un candidat potentiellement capable de promouvoir de tels changements, nous avons pu mettre en évidence que ces cellules représentaient de façon précoce une source importante de BDNF. Ces résultats ont été confirmés par la nette diminution des taux de BDNF mesurés dans les zones corticales lésionnelles et péri-lésionnelles des animaux traités par le 3-AB. Dans un deuxième temps, le métabolisme complexe de cette neurotrophine à travers l’existence de deux formes, pro- et mature, aux effets biologiques opposés, nous a conduit à réaliser une étude spatio-temporelle des expressions post-ischémiques du BDNF total (ELISA), pro- et mature (Western blotting). Aux temps courts (4-24 h), les expressions du BDNF total, pro- et mature sont augmentées dans les territoires corticaux lésés, péri-lésionnels et homotopiques tandis qu’aux temps longs (8-30 j), le BDNF total reste accru dans les régions distantes de la zone infarcie (hippocampes et cortex contralatéral). Concernant les expressions des formes pro- et mature, nos résultats indiquent une augmentation entre 8 et 30 j uniquement dans les territoires hippocampiques. D’un point de vue cellulaire, le BDNF est exprimé du côté ipsilatéral dans les neurones et les cellules non neuronales tandis que du côté contralatéral, l’expression est limitée aux neurones. Nos résultats tout en faisant apparaître des divergences importantes dans les variations d’expressions du BDNF total (ELISA) et des différentes formes (Western blotting) indiquent que la mesure du BDNF total doit être couplée à une étude permettant de discriminer les deux formes. De plus, tout en confirmant l’implication de cette neurotrophine dans les mécanismes adaptatifs induits en réponse à une ischémie cérébrale, ces données suggèrent que les territoires distants de la zone lésée jouent un rôle majeur dans ces processus. / Evidences showing that under certain circumstances, inflammatory response could be neuroprotective and could also promote adult neurogenesis are growing. In this context, the objective of this work was to investigate the impact of microglial cells in the neuroplastic events. Rats were subjected to photothrombotic ischemia and microglial cells activation was blocked by the mean of poly(ADP-ribose)polymérase-1 (PARP-1) inhibition using 3- aminobenzamide (3-AB) since this protein has been shown to play a major role in this activation. Our results show that PARP-1 activity reduction was associated with a strong repression of the acute microglial activation. Beside, 3-AB treated animals exhibited a decrease in synaptophysin (synaptogenesis) and GAP-43 (axonal growth) expressions. Taken together, our data argue for a supportive role of microglial in adaptive brain plasticity events. According to the preponderant contribution of BDNF in these events, assessment of its cellular localization was performed, and confirmed that these cells represent a significant source. Beside, BDNF immunoreactivity (IR) in microglial cells and BDNF levels in the lesioned and surrounding lesioned areas were found decreased in 3-AB treated animals. However, since this neurotrophin can exert ambivalent biological actions through pro- versus mature forms, we investigate the proper effect of cerebral ischemia on total (Elisa), pro- and mature (Western blotting) expressions. Our results show that total, pro- and mature BDNF expressions are augmented in the early times (4-24h) of ischemia within the lesioned, the surrounding non lesioned and the contralateral cortical areas. At longer time points, total BDNF was still increased at 8d in regions distant from the lesion (hippocampi and contralateral cortex) while pro- and mature forms rise between 8d to 30d in hippocampic territories only. In term of cellular distribution, BDNF-IR was found in neurons but also in non neuronal cells ipsilaterally whereas in the opposite side BDNF staining was restricted to neurons. Our data while raising the question of the pertinence of total BDNF expression in a context of studying its supportive potential action indicate that such assessment has to be coupled with the discrimination of both forms. In addition, our data confirm the important role of BDNF in post-stroke adaptive mechanisms and argue in favour of an important contribution of the hippocampal territory and of the contralateral hemisphere in BDNF related post-stroke neuronal circuit remodelling suggesting that strategies targeting this hemisphere are likely to mediate functional compensation.
62

Fonctions du facteur de transcription Lyl-1 dans le développement du lignage macrophagique / Functions of the transcription factor Lyl-1 in the development of the macrophage lineage

Wang, Shoutang 27 November 2017 (has links)
Les macrophages (MΦ) du système nerveux central forment la microglie, qui contrôle son homéostasie. Plusieurs modèles de "fate mapping" ont montré que la microglie provenait du Sac vitellin (SV). Celui-ci produit les MΦ en deux vagues indépendantes. Dans la première, des progéniteurs restreints génèrent des MΦ primitifs, alors que dans la seconde, des progéniteurs érythro-myéloïdes produisent des MΦ définitifs. Les progéniteures primitifs et définitifs ont les mêmes phenotype et voie de différenciation. Leurs spécificités et leurs contributions aux étapes ultérieures du développement sont donc encore incomprises. Nous montrons que l'expression du facteur de transcription Lyl-1 discrimine les populations de MΦ primitifs et définitifs. Les MΦ primitifs Lyl-1+ fournissent la microglie de l'embryon. De plus, l'invalidation de Lyl-1 disruption conduit à une production accrue de MΦ primitive dans le SV précoce, puis à une réduction du contingent microglial à deux stades spécifiques du développement. Lyl-1 est spécifiquement exprimé par la microglie et aucun autre type cellulaire nerveux. Son inactivation conduit à des modifications comportementales typiques de l'anxiété sociale. Nous identifions donc Lyl-1 comme un marqueur des MΦ primitifs du SV qui donnent naissance à la microglie de l'embryon. Nous montrons également que Lyl-1 contrôle l'expansion et la différenciation de la microglie, et est ainsi impliqué dans la régulation des processus du neuro-développement. / Microglia are tissue macrophages (MΦ) of the central nervous system that control tissue homeostasis. Different fate mapping models have shown that microglia originates from the yolk sac (YS). Macrophages production in the YS occurs in two independent waves. In the first, primitive MΦ originate from restricted progenitors, while in the second, definitive MΦ are produced by erythro-myeloid progenitors. Because primitive and definitive MΦ progenitors share the same phenotype and differentiation pathway, their specific features and contribution to further developmental steps are still poorly understood. We here show that the expression of thee transcription factor Lyl-1 discriminates primitive and definitive MΦ populations. YS-derived Lyl-1+ primitive MΦ contribute to embryonic microglia. Moreover, Lyl-1 disruption results in an increased production of primitive MΦ progenitors in the early YS. It also leads to the reduction of the microglia pool at two specific development stages. Lyl-1 is specifically expressed in microglia, but not other brain cells and its inactivation leads to behavioral changes typical for social anxiety disorders. Thus, we identify Lyl-1 as a marker for YS primitive MΦ that will give rise to the entire microglia. We show that Lyl-1 controls microglia expansion and differentiation and is involved in the regulation of neurodevelopmental processes.
63

Deregulation of central and peripheral innate immune responses in ALS

Barreto Nunez, Romina Daiana 14 June 2023 (has links)
Titre de l'écran-titre (visionné le 5 juin 2023) / Au cours des dernières décennies, la prévalence des maladies neurodégénératives, dont la sclérose latérale amyotrophique (SLA), a augmenté au point d'être considérées comme des maladies épidémiques ayant un énorme impact socio-économique. La SLA est une maladie mortelle des motoneurones caractérisée par la dégénérescence des motoneurones supérieurs et inférieurs. Après des années de recherche, les mécanismes pathologiques demeurent peu clairs. À ce jour, il n'existe aucun traitement efficace pour prévenir, guérir ou arrêter la progression de la maladie. La neuroinflammation et l'activation chronique des cellules microgliales sont l'une des principales caractéristiques de la pathologie de la SLA. Alors que le profil moléculaire de la microglie associée à la maladie (DAM) a été bien caractérisé au niveau de l'ARN, le profil protéomique de la maladie n'est pas bien élucidé. Dans le chapitre 2 de cette thèse, nous avons réalisé une caractérisation fonctionnelle ainsi que des analyses du protéome des DAMs aux différents stades de la maladie dans le modèle SOD1[exposant G93A]. Les analyses fonctionnelles des DAMs dérivées de la moelle épinière lombaire de souris SLA symptomatiques ont révélé: i) un indice mitotique remarquablement élevé; ii) une diminution significative de la capacité phagocytaire par rapport aux microglies de type sauvage; et iii) une réponse attétuée aux stimulateurs de l'immunité innée in vitro et in vivo. L'analyse du protéome a révélé le développement de deux signatures moléculaires distinctes aux stades précoce et avancé de la maladie. Malgré qu'aux stades précoces de la maladie, nous avons identifié plusieurs protéines impliquées dans les fonctions immunitaires de la microglie telles que GPNMB et HMBOX1, aux stades avancés de la maladie, la signature protéique des cellules DAM a été caractérisée par une forte régulation à la hausse de plusieurs protéines non conventionnelles, notamment Rootletin, les protéines des voûtes majeures (MVP) et STK38. L'expression de la GPNMB et de la Rootletin a également été validée dans les tissus humains de la maladie. Il est important de noter que les principales fonctions biologiques associées aux cellules DAM, en particulier celles des stades avancés, n'étaient pas liées à l'immunité/réponse immunitaire, mais plutôt au métabolisme de l'ARN. L'ensemble de nos résultats suggère qu'au fil du temps, les microglies activées de façon chronique dans la SLA développent des signatures protéiques non conventionnelles et perdent progressivement leur identité immunitaire pour finalement se transformer en cellules immunitaires inefficaces. De plus en plus de preuves mettent en évidence le rôle critique du système immunitaire périphérique (SIP) dans la régulation de la pathogenèse de la SLA. Par conséquent, dans le chapitre 3 de cette thèse, nous avons évalué le rôle du SIP dans la régulation de la pathogenèse de la SLA. L'étude du rôle du SIP peut améliorer les stratégies thérapeutiques et la découverte de biomarqueurs. En utilisant un modèle in-vivo appelé «EDTA-TRAP» pour l'analyse de l'état traductionel dynamique des ribosomes au niveau des monocytes/macrophages. Avec des ARNm à l'entrée des ribosomes et des peptides nouvellement synthétisés à la sortie, nous avons observé un arrêt de la traduction et une dissociation marquée des profils d'ARNm et de protéines des monocytes/macrophages. Les ARNm fortement régulés sont impliqués dans les réponses immunitaires innées et enrichis en termes d'infections virales et bactériennes, alors que les peptides régulés n'étaient impliqués que dans les fonctions du cytosquelette. Nous avons détecté une augmentation des niveaux de pSRSF3 dans les PBMCs et le plasma des souris SOD1[exposant G93A]. De plus pSRSF3 montre une localisation cellulaire cytoplasmique. Dans ce contexte, nous avons pointé la protéine de liaison à l'ARN SRSF3 en tant que régulateur principal de la traduction. L'administration intrapéritonéale hebdomadaire des oligos antisens de type Morpholino anti-SRSF3 initiée à un stade avancé de la maladie chez les souris transgéniques SOD1[exposant G93A] a ralenti la progression de la maladie, diminué la perte de poids corporel et prolongé la survie des souris SLA. De façon remarquable, le blocage de SRSF3 dans les monocytes humains en culture a restauré leurs propriétés phagocytaires. Dans l'ensemble, nos résultats présentent de nouvelles cibles possibles pour immunomoduler et reprogrammer la machine inflammatoire plutôt que de la supprimer. De plus, nous avons proposé le SRSF3 comme nouveau biomarqueur potentiel, qui pourrait être utilisé pour la stratification de la maladie SLA. / In the last decades neurodegenerative diseases, including Amyotrophic Lateral Sclerosis (ALS), have increased their prevalence until the point of being considered as epidemic diseases with enormous socio-economic impact. ALS is a fatal motoneuron disease characterized by the degeneration of upper and inner motoneurons. After years of research, the pathological mechanisms remain poorly understood. To date, there are no effective treatments to prevent, cure or stop the progression. Neuroinflammation and chronic activation of microglial cells are one of the prominent features of ALS pathology. While the molecular profile of disease-associated microglia (DAM) has been well characterized at the RNA level, the disease-related changes in proteome remain elusive. In chapter 2 of this thesis, we performed a functional characterization together with proteome analyses of DAMs at the different stages of disease in the in the SOD1[superscript G93A] model. Functional analyses of DAMs derived from the lumbar spinal cord of symptomatic ALS mice revealed: i) remarkably high mitotic index ii) a significant decrease in the phagocytic capacity when compared to age-matched wild-type microglia and iii) diminished response to innate immune challenges in vitro and in vivo. Proteome analysis revealed development of two distinct molecular signature at early and advanced stages of disease. While at early stages of the disease, we identified several proteins implicated in microglia immune functions such as GPNMB, Hmbox1, at advanced stages of disease DAM signature at protein levels was characterized with a robust upregulation of several unconventional proteins including Rootletin, major vaults proteins, STK38. Furthermore, we validated the expression of GPNMB and Rootletin in human disease. Importantly, the top associated biological functions of DAMs, in advanced disease, were not related to immunity/immune response, as the top biological functions were linked to RNA metabolism. Together, our results suggest that, over time, chronically activated microglia in ALS develop unconventional protein signatures and gradually lose their immune identity ultimately turning into functionally inefficient immune cells. Increasing evidence pinpoints the critical role of the peripheral immune system (PIS) in regulating the pathogenesis of ALS disease. Therefore, in chapter 3 of this thesis, we evaluated the role of the PIS in regulating the pathogenesis of ALS disease. Investigating the role of the PIS may improve therapeutic strategies and biomarker discovery. Using an in-vivo model system EDTA-TRAP for analysis of the dynamic translational state of monocyte/macrophage ribosomes. With mRNAs as input and newly synthesized peptides as output we observed a shut-down of the translation and a marked dissociation of monocyte/macrophage mRNA and protein profiles. The highly upregulated mRNAs are involving in innate immune responses and enriched in viral and bacterial infection terms while the upregulated peptides were only involving in cytoskeletal functions. We detected increase levels of pSRSF3 in PBMCs and plasma of SOD1[superscript G93A] mice and it showed a cytoplasmic accumulation. In this context, we targeted the RNA binding protein SRSF3 as a master regulator of translation. Weekly intraperitoneal delivery of anti-SRSF3-morpholinos initiated at late symptomatic disease in SOD[superscript G93A] transgenic mice slowed down the disease progression, decreased the body weight loss, and extend the survival of the ALS-model treated mice. Remarkably, targeting SRSF3 in human cultured monocytes restored their phagocytic properties. Taken together, our results present a new possible targets to immunomodulate and re-programmate the inflammatory machine rather than suppress it. Additionally, we proposed SRSF3 as a new potential biomarker, that could be used for ALS disease stratification.
64

Le rôle de l'inflammation et des microglies dans la sclérose latérale amyotrophique = : The role of inflammation andm microglia in amyotrophic lateral sclerosis / Role of inflammation and microglia in amyotrophic lateral sclerosis

Gowing, Geneviève 16 April 2018 (has links)
La sclérose latérale amyotrophique (SLA) est une maladie mortelle caractérisée par la dégénénérescence des neurones moteurs. La majorité des cas de SLA ont une origine sporadique (SLAs) et les autres sont des cas familiaux (SLAf) étant hérités génétiquement. Une portion des cas de SLAf est associée à des mutations dans le gène codant pour la Cu/Zn superoxyde dismutase (SOD1). La microgliose est une caractéristique pathologique observée dans les tissus des patients atteints de maladies du système nerveux incluant la SLA. La microgliose et la réponse inflammatoire dans le SNC peuvent avoir des effets bénéfiques ou néfastes. Ainsi, l'activation microgliale dans la pathologie de la SLA pourrait promouvoir la survie neuronale mais aussi causer ou exacerber la dégénérescence des motoneurones. Pour déterminer le rôle des microglies et des médiateurs inflammatoires dans la dégénérescence des motoneurones causée par des mutations dans la SOD1, nous avons utilisé les souris 5001 mutantes, modèles de la SLA. Dans un premier temps (chapitre 2), afin de déterminer le rôle de la cytokine TNF-a dans la SLA, nous avons généré des souris exprimant les mutants 5001 G37R ou 5001 G93A dans un contexte où l'expression du TNF-a a été supprimée (souris knock-out). Dans une seconde approche (chapitre 3), par cytométrie de flux, nous avons caractérisé les populations de cellules microgliales dans la moelle épinière des souris transgéniques mutantes 5001 G93A. Dans cette étude, nous avons démontré que l'augmentation du nombre de cellules microgliales dans ce modèle murin est largement attribuable à la prolifération de celles-ci. Subséquemment, nous avons utilisé des souris transgéniques CD11b-TKmut-30, chez lesquelles les microglies en prolifération peuvent être sélectivement éliminées, afin de déterminer le rôle des microglies en prolifération dans la SLA causée par des mutations dans la SOD1. Dans une dernière étude, nous avons tenté d'induire un phénotype neuroprotecteur aux cellules microgliales via l'administration de la cytokine macrophage colony stimulating factor (M-CSF) chez des souris transgéniques 5001 G37R et chez des souris chimériques 5001 G37R ayant subi une transplantation de moelle osseuse sauvage.
65

Localisation, mécanisme d’induction et rôle physiopathologique du récepteur B1 des kinines dans de modèles expérimentaux de douleur chez le rat

Talbot, Sébastien 06 1900 (has links)
Les kinines sont des peptides neuro- et vaso- actifs impliqués dans les processus hémodynamiques, inflammatoires et douloureux. Leurs effets biologiques sont produits par l’entremise de deux types de récepteurs couplés aux protéines G, soit B1 (B1R) et B2 (B2R). Le B1R est inductible, son expression est augmentée à la suite d’un dommage tissulaire ou de l’exposition à des endotoxines bactériennes (lipopolysaccharide bactérien (LPS)), à des cytokines pro-inflammatoires (interleukine-1β (IL-1β), facteur de nécrose tumorale-α (TNF-α)) ou à des espèces réactives oxygénées (ROS). Les travaux présentés dans cette thèse avaient pour objectif d’élucider et/ou de raffiner les connaissances sur 1) la localisation, 2) le mécanisme d’induction et 3) le rôle physiopathologique du B1R dans des modèles expérimentaux de douleur chez le rat. Nos données ont permis de démontrer pour la première fois que le B1R est augmenté de façon significative dans la moelle épinière du rat diabétique de type 1 où il est localisé sur les fibres sensorielles de type C, les astrocytes et les cellules de la microglie (1er article). Également, l’inhibition de l’activation des cellules de la microglie supprime les neuropathies diabétiques, l’expression de médiateurs pro-inflammatoires ainsi que l’activité pro-nociceptive du B1R (2e et 3e articles). Finalement, nous avons démontré que la stimulation systémique du TRPV1 par la capsaïcine induit une surexpression du B1R au niveau microgliale, via un mécanisme impliquant l’augmentation de la production de ROS et possiblement de cytokines (4e article). Ces données nous permettent de mieux comprendre les mécanismes impliqués dans l’expression et l’activité du B1R. Aussi, elles nous permettent d’imaginer de nouvelles stratégies pour prévenir l’induction du B1R (inhibition du TRPV1) ou son activité délétère (inhibition de l’activation des cellules de la microglie) dans la douleur inflammatoire et neuropathique. / Kinins are vaso- and neuro-active peptides involved in hemodynamic, inflammatory and pain processes. Their biological effects are mediated by two G Protein Coupled Receptors (GPCR), termed B2R (constitutive) and B1R (inducible). B1R is expressed following tissue damage or exposure to bacterial endotoxin (LPS), pro-inflammatory cytokines (IL-1β, TNF-α) and increased reactive oxygen species (ROS) levels. The objectives of this doctoral thesis were to define 1) the localisation, 2) the mechanism of induction and 3) the pathophysiological role of B1R in experimental models of pain in rat. Our data showed that B1R is significantly upregulated on sensory C fibers, astrocytes and microglia in spinal cord of type 1 diabetic rat (paper #1). Moreover, pharmacological inhibition of microglia reversed diabetic pain neuropathy, reduced levels of pro-inflammatory mediators and prevented B1R pro-nociceptive activity (papers #2 and 3). Finally, our data showed that systemic stimulation of TRPV1 with capsaicin upregulated B1R expression, mainly on microglia, through the increase of ROS and possibly cytokines (paper #4). Altogether, these data increased our knowledge related to B1R mechanism of induction and B1R activity. Also, these data shed light on new strategies to prevent B1R expression (TRPV1 blockade) and B1R deleterious activity (inhibition of microglia activation) in inflammatory and neuropathic pain.
66

La rigidité artérielle, induite par une calcification des carotides, altère l’homéostasie cérébrale chez la souris

Sadekova, Nataliya 04 1900 (has links)
La rigidité artérielle est considérée comme un facteur de risque important pour le développement du déclin cognitif. Toutefois, les effets précis de la rigidité artérielle sur le cerveau sont peu connus et, à ce jour, aucun modèle animal ne permet d’étudier l’effet isolé de ce facteur sur l’homéostasie cérébrale. Dans cette étude, nous avons développé un nouveau modèle de rigidité artérielle qui se base sur la calcification de l’artère carotide chez la souris. Au niveau artériel, ce modèle présente une fragmentation de l’élastine, une augmentation de la distribution du collagène et de l’épaisseur intima-média ainsi qu’une diminution de la compliance et de la distensibilité artérielles démontrant la rigidité artérielle. De plus, le modèle ne présente pas d’augmentation de pression artérielle ni de changement de rayon du lumen indiquant une absence d’hypoperfusion globale et d’anévrisme. Au niveau cérébral, les résultats montrent que la rigidité artérielle induit une augmentation de la pulsatilité du flux sanguin cérébral menant ainsi à une augmentation du stress oxydatif. Ce dernier induit une inflammation cérébrale, détectée par l’activation de la microglie et des astrocytes, induisant ultimement une neurodégénérescence. Ces effets sont surtout observés au niveau de l’hippocampe, la région cruciale pour la mémoire et la cognition. Ainsi, cette étude montre que la rigidité artérielle altère l’homéostasie cérébrale et mérite d’être considérée comme une cible potentielle dans la prévention et le traitement des dysfonctions cognitives chez les personnes âgées. / Arterial stiffness is considered as an important risk factor for the development of cognitive decline in the elderly population. However, its precise effects on the brain are unknown and, to date, no animal model allows to study the precise outcome of arterial stiffness on the brain homeostasis. In this study, we developed a new animal model of arterial stiffness based on the calcification of the carotid artery in mice. On the arterial level, this model shows a fragmentation of elastin, increased collagen distribution and intima-media thickness as well as decreased arterial compliance and distensibility, thus fulfilling the major arterial stiffness properties. In addition, this model does not a show an increase in blood pressure or change in arterial lumen radius indicating a lack of global hypoperfusion and aneurysm. Regarding the brain, the results show that arterial stiffness induces an increase in cerebral blood flow pulsatility leading to increased oxidative stress. Oxidative stress induces brain inflammation, detected by the activation of microglia and astrocytes, ultimately leading to neurodegeneration. These effects are particularly observed in the hippocampus, a crucial area for memory and cognition. Thus, this study shows that arterial stiffness alters brain homeostasis and therefore should be considered as a potential therapeutical target for the prevention and treatment of cognitive dysfunction in the elderly.
67

Intéractions microglie/neurones dans un modèle murin de neurodégénérescence induite par la 6-OHDA / Microglia/Neuron Interactions in a murine model of 6‐OHDA‐induced dopaminergic neurodegeneration

Virgone-Carlotta, Angélique 12 December 2011 (has links)
Ce travail de thèse porte sur l'étude de la réaction microgliale et des interactions microglie/neurones dans un modèle murin de neurodégénérescence dopaminergique induit par l'injection de 6‐hydroxydopamine (6‐ OHDA). Dans ce modèle, nous décrivons tout d'abord les cinétiques d'activation microgliale, de perte neuronale et d'altérations comportementales en relation avec le déficit dopaminergique. Dans la substance noire lésée ont été observées une perte progressive des neurones dopaminergiques TH+ (Tyrosine Hydroxylase) ainsi qu'une activation microgliale précoce mais transitoire. Le rôle délétère de cette activation microgliale est fortement suggéré par la mise en évidence d'une protection partielle contre la toxicité induite par la 6‐OHDA dans des souris génétiquement modifiées DAP12 Knock‐In, dont la densité microgliale est constitutivement diminuée. Par ailleurs, nous avons identifié différents types de contacts intercellulaires entre les neurones et la microglie de la substance noire lésée. Ces interactions physiques sont matérialisées entre autres sous la forme de contacts intimes entre le corps cellulaire des cellules microgliales et le soma des neurones dopaminergiques. De façon intéressante, ce type d'interaction se met en place quelques jours avant le pic de mort neuronale et dans la grande majorité des cas, concerne des neurones présentant des signes morphologiques d'apoptose. Finalement, nous avons également identifié un nouveau type d'interaction physique entre neurones et microglie sous la forme de ramifications microgliales pénétrant le soma des neurones. Ces interactions s'apparentent aux "tunelling nanotubes" décrits dans la littérature et représentent un type particulier de ramifications microgliales perforantes que nous avons nommées "tunelling ramifications". La présence de vacuoles TH+ dans le cytoplasme de nombreuses cellules microgliales suggère que les ramifications microgliales pénétrantes sont le support d'un processus de microphagocytose ciblant le cytoplasme des neurones dopaminergiques. La fonction précise de ces interactions et les mécanismes moléculaires qui les suscitent restent à définir. Toutefois, ce travail de thèse apporte un ensemble de données originales sur le dialogue microglie/neurones dans un modèle murin de la maladie de Parkinson / This thesis work is aimed to study microglial reaction and microglia/neuron interactions in a murine model of dopaminergic neurodegeneration induced by the injection of 6‐hydroxydopamine (6‐OHDA). In this model, we first describe the kinetics of microglial activation, neuronal cell loss and behavioral alterations in relation with the dopaminergic defect. In the injured substantia nigra, we observed a progressive loss of TH+ (Tyrosine Hydroxylase ‐positive) dopaminergic neurons and an early but transient microglial activation. The deleterious role of microglial activation is strongly suggested by the observation of a partial neuroprotection against 6‐OHDA‐induced toxicity in genetically DAP12 Knock‐In mice, in which microglial cells are defective in regard to their number and function. In addition, we identified various types of cell‐tocell contacts between neurons and microglia in the injured substantia nigra. Such physical interactions were established between microglia and neuronal cell bodies several days before the peak of neuronal death and in the majority of cases in neurons showing morphological signs of apoptosis. Finally, we also identified a new type of physical interactions consisting in microglial ramifications penetrating the soma of TH+ neurons. These interactions present similarities with the so‐called « tunelling nanotubes » previously described in the literature and represent a particular type of penetrating microglial ramifications the we named "tunelling ramifications.". Interestingly, in the injured substantia nigra, the presence of TH+ vacuoles in the cytoplasm of numerous microglial cells strongly suggests that microglial ramifications support microphagocytosis targeted toward the cytoplasm of dopaminergic neurons. The precise function and molecular mechanisms of such unique interactions need to be further assessed. However, our work provides a set of original data that deepens our knowledge on the dialogue between microglia and neurons in a mouse model of Parkinson's disease
68

Contrôle de l'activation microgliale par les lymphocytes T dans un modèle murin de neurodégénérescence induite par la 6-OHDA / Control of microglial activation by T-cells in a murine model of 6-OHDA-induced dopaminergic neurodegeneration

Uhlrich, Josselin 02 July 2014 (has links)
Ce travail de thèse décrit et analyse la réaction neuro-inflammatoire accompagnant la mort cellulaire neuronale dans un modèle murin de la maladie de Parkinson. Dans ce modèle, induit par l’injection intrastriatale d'un analogue toxique de la dopamine, la 6-hydroxydopamine (6-OHDA), nous décrivons les caractéristiques et la cinétique de l’activation microgliale, de l'infiltration lymphocytaire T, de la perte de neurones dopaminergiques TH+ (Tyrosine Hydroxylase) et des altérations du comportement moteur. Nos observations sont complétées par une étude neuropathologique de la substance noire chez des patients atteints de maladie de Parkinson. Les résultats montrent que, chez l'homme comme chez la souris, la mort de neurones dopaminergiques induit une infiltration T de faible intensité, limitée à la substance noire et s'accompagnant d'une activation microgliale. Dans un deuxième temps, nous analysons l'impact d'une déficience lymphocytaire T génétiquement déterminée sur les paramètres histologiques et fonctionnels caractérisant le modèle 6-OHDA. Nos résultats montrent que, comparées à des souris contrôles immunocompétentes, les souris immunodéficientes de souche Foxn1 KO, CD3 KO, NOD SCID ou RAG1 KO présentent toutes, à des degrés divers, une susceptibilité significativement accrue aux effets neurotoxiques de la 6-OHDA. L'aggravation observée de la perte neuronale s'accompagne d'une accentuation majeure des troubles du comportement moteur et de l'activation microgliale. Ce travail démontre l'importance de la neuro-inflammation et de l'immunité adaptative dans la physiopathologie du modèle 6-OHDA. Il suggère également que les LyT infiltrant la substance noire des patients atteints de maladie de Parkinson exercent un rôle inhibiteur sur l'activation microgliale et pourraient par ce mécanisme ralentir l'évolution de la perte neuronale dopaminergique. En résumé, ce travail de thèse apporte un ensemble de données originales sur les interactions entre LyT, microglie et neurones dopaminergiques dans le contexte de la maladie de Parkinson et du modèle murin 6-OHDA / This thesis work describes and analyzes the neuroinflammatory reaction that accompanies neuronal cell death in a murine model of Parkinson's disease. In this model, induced by the intrastriatal injection of 6-hydroxydopamine (6-OHDA), a toxic dopamine analog, we report on the main features and kinetics of microglial activation, T-cell infiltration, loss of TH+ (Tyrosine Hydroxylase) dopaminergic neurons and motor behavior alterations. We also assessed the presence of T-cells in the susbstantia nigra of Parkinson's disease patients and found that, as observed in the 6-OHDA murine model, the neuronal cell death of dopaminergic neurons triggers a low-grade T-cell infiltration that accompanies microglial activation. We then studied the impact of genetically-determined T-cell immunodeficiency on histological and functional outcomes in the 6-OHDA model. Our results show that, as compared to immunocompetent control mice, immunodeficient strains consisting in Foxn1 KO, CD3 KO, NOD SCID or RAG KO mice consistently presented, at varied levels, a highest susceptibility to 6-OHDA induced dopaminergic neurodegeneration. The observed accentuation of neuronal cell loss was accompanied by a marked increase of microglial activation and motor behavior alterations. Our work demonstrates the pathophysiological role of neuroinflammation and adaptative immunity in the 6-OHDA model. It also suggests that T-cells infiltrating the substantia nigra of Parkinson's disease patients dampen microglial activation and could, via this inhibitory effect, slow the progression of dopaminergic cell loss. Overall this thesis work provides original data on the interactions between T-cells, microglia and dopaminergic neurons in the context of Parkinson's disease and the murine 6-OHDA model
69

Localisation, mécanisme d’induction et rôle physiopathologique du récepteur B1 des kinines dans de modèles expérimentaux de douleur chez le rat

Talbot, Sébastien 06 1900 (has links)
Les kinines sont des peptides neuro- et vaso- actifs impliqués dans les processus hémodynamiques, inflammatoires et douloureux. Leurs effets biologiques sont produits par l’entremise de deux types de récepteurs couplés aux protéines G, soit B1 (B1R) et B2 (B2R). Le B1R est inductible, son expression est augmentée à la suite d’un dommage tissulaire ou de l’exposition à des endotoxines bactériennes (lipopolysaccharide bactérien (LPS)), à des cytokines pro-inflammatoires (interleukine-1β (IL-1β), facteur de nécrose tumorale-α (TNF-α)) ou à des espèces réactives oxygénées (ROS). Les travaux présentés dans cette thèse avaient pour objectif d’élucider et/ou de raffiner les connaissances sur 1) la localisation, 2) le mécanisme d’induction et 3) le rôle physiopathologique du B1R dans des modèles expérimentaux de douleur chez le rat. Nos données ont permis de démontrer pour la première fois que le B1R est augmenté de façon significative dans la moelle épinière du rat diabétique de type 1 où il est localisé sur les fibres sensorielles de type C, les astrocytes et les cellules de la microglie (1er article). Également, l’inhibition de l’activation des cellules de la microglie supprime les neuropathies diabétiques, l’expression de médiateurs pro-inflammatoires ainsi que l’activité pro-nociceptive du B1R (2e et 3e articles). Finalement, nous avons démontré que la stimulation systémique du TRPV1 par la capsaïcine induit une surexpression du B1R au niveau microgliale, via un mécanisme impliquant l’augmentation de la production de ROS et possiblement de cytokines (4e article). Ces données nous permettent de mieux comprendre les mécanismes impliqués dans l’expression et l’activité du B1R. Aussi, elles nous permettent d’imaginer de nouvelles stratégies pour prévenir l’induction du B1R (inhibition du TRPV1) ou son activité délétère (inhibition de l’activation des cellules de la microglie) dans la douleur inflammatoire et neuropathique. / Kinins are vaso- and neuro-active peptides involved in hemodynamic, inflammatory and pain processes. Their biological effects are mediated by two G Protein Coupled Receptors (GPCR), termed B2R (constitutive) and B1R (inducible). B1R is expressed following tissue damage or exposure to bacterial endotoxin (LPS), pro-inflammatory cytokines (IL-1β, TNF-α) and increased reactive oxygen species (ROS) levels. The objectives of this doctoral thesis were to define 1) the localisation, 2) the mechanism of induction and 3) the pathophysiological role of B1R in experimental models of pain in rat. Our data showed that B1R is significantly upregulated on sensory C fibers, astrocytes and microglia in spinal cord of type 1 diabetic rat (paper #1). Moreover, pharmacological inhibition of microglia reversed diabetic pain neuropathy, reduced levels of pro-inflammatory mediators and prevented B1R pro-nociceptive activity (papers #2 and 3). Finally, our data showed that systemic stimulation of TRPV1 with capsaicin upregulated B1R expression, mainly on microglia, through the increase of ROS and possibly cytokines (paper #4). Altogether, these data increased our knowledge related to B1R mechanism of induction and B1R activity. Also, these data shed light on new strategies to prevent B1R expression (TRPV1 blockade) and B1R deleterious activity (inhibition of microglia activation) in inflammatory and neuropathic pain.
70

La rigidité artérielle, induite par une calcification des carotides, altère l’homéostasie cérébrale chez la souris

Sadekova, Nataliya 04 1900 (has links)
La rigidité artérielle est considérée comme un facteur de risque important pour le développement du déclin cognitif. Toutefois, les effets précis de la rigidité artérielle sur le cerveau sont peu connus et, à ce jour, aucun modèle animal ne permet d’étudier l’effet isolé de ce facteur sur l’homéostasie cérébrale. Dans cette étude, nous avons développé un nouveau modèle de rigidité artérielle qui se base sur la calcification de l’artère carotide chez la souris. Au niveau artériel, ce modèle présente une fragmentation de l’élastine, une augmentation de la distribution du collagène et de l’épaisseur intima-média ainsi qu’une diminution de la compliance et de la distensibilité artérielles démontrant la rigidité artérielle. De plus, le modèle ne présente pas d’augmentation de pression artérielle ni de changement de rayon du lumen indiquant une absence d’hypoperfusion globale et d’anévrisme. Au niveau cérébral, les résultats montrent que la rigidité artérielle induit une augmentation de la pulsatilité du flux sanguin cérébral menant ainsi à une augmentation du stress oxydatif. Ce dernier induit une inflammation cérébrale, détectée par l’activation de la microglie et des astrocytes, induisant ultimement une neurodégénérescence. Ces effets sont surtout observés au niveau de l’hippocampe, la région cruciale pour la mémoire et la cognition. Ainsi, cette étude montre que la rigidité artérielle altère l’homéostasie cérébrale et mérite d’être considérée comme une cible potentielle dans la prévention et le traitement des dysfonctions cognitives chez les personnes âgées. / Arterial stiffness is considered as an important risk factor for the development of cognitive decline in the elderly population. However, its precise effects on the brain are unknown and, to date, no animal model allows to study the precise outcome of arterial stiffness on the brain homeostasis. In this study, we developed a new animal model of arterial stiffness based on the calcification of the carotid artery in mice. On the arterial level, this model shows a fragmentation of elastin, increased collagen distribution and intima-media thickness as well as decreased arterial compliance and distensibility, thus fulfilling the major arterial stiffness properties. In addition, this model does not a show an increase in blood pressure or change in arterial lumen radius indicating a lack of global hypoperfusion and aneurysm. Regarding the brain, the results show that arterial stiffness induces an increase in cerebral blood flow pulsatility leading to increased oxidative stress. Oxidative stress induces brain inflammation, detected by the activation of microglia and astrocytes, ultimately leading to neurodegeneration. These effects are particularly observed in the hippocampus, a crucial area for memory and cognition. Thus, this study shows that arterial stiffness alters brain homeostasis and therefore should be considered as a potential therapeutical target for the prevention and treatment of cognitive dysfunction in the elderly.

Page generated in 0.0974 seconds