Spelling suggestions: "subject:"minimal polynomial"" "subject:"1inimal polynomial""
1 |
Generalized minimal polynomial over finite field and its application in coding theoryJen, Tzu-Wei 27 July 2011 (has links)
In 2010, Prof. Chang and Prof. Lee applied Lagrange interpolation formula to decode a class of binary cyclic codes, but they did not provide an effective way to calculate the Lagrange interpolation formula. In this thesis, we use the least common multiple of polynomials to compute it effectively.
Let E be an extension field of degree m over F = F_p and £] be a primitive nth root of unity in E. For a nonzero element r in E, the minimal polynomial of r over F is denoted by m_r(x). Then, let Min (r, F) denote the least common multiple of m_r£]^i(x) for i = 0, 1,..., n-1 and be called the generalized minimal polynomial of over F. For any binary quadratic residue code mentioned in this thesis, the set of all its correctable error patterns can be partitioned into root sets of some generalized minimal polynomials over F. Based on this idea, we can develop an effective method to calculate the Lagrange interpolation formula.
|
2 |
Extrapolation vectorielle et applications aux équations aux dérivées partielles / Vector extrapolation and applications to partial differential equationsDuminil, Sébastien 06 July 2012 (has links)
Nous nous intéressons, dans cette thèse, à l'étude des méthodes d'extrapolation polynômiales et à l'application de ces méthodes dans l'accélération de méthodes de points fixes pour des problèmes donnés. L'avantage de ces méthodes d'extrapolation est qu'elles utilisent uniquement une suite de vecteurs qui n'est pas forcément convergente, ou qui converge très lentement pour créer une nouvelle suite pouvant admettreune convergence quadratique. Le développement de méthodes cycliques permet, deplus, de limiter le coût de calculs et de stockage. Nous appliquons ces méthodes à la résolution des équations de Navier-Stokes stationnaires et incompressibles, à la résolution de la formulation Kohn-Sham de l'équation de Schrödinger et à la résolution d'équations elliptiques utilisant des méthodes multigrilles. Dans tous les cas, l'efficacité des méthodes d'extrapolation a été montrée.Nous montrons que lorsqu'elles sont appliquées à la résolution de systèmes linéaires, les méthodes d'extrapolation sont comparables aux méthodes de sous espaces de Krylov. En particulier, nous montrons l'équivalence entre la méthode MMPE et CMRH. Nous nous intéressons enfin, à la parallélisation de la méthode CMRH sur des processeurs à mémoire distribuée et à la recherche de préconditionneurs efficaces pour cette même méthode. / In this thesis, we study polynomial extrapolation methods. We discuss the design and implementation of these methods for computing solutions of fixed point methods. Extrapolation methods transform the original sequance into another sequence that converges to the same limit faster than the original one without having explicit knowledge of the sequence generator. Restarted methods permit to keep the storage requirement and the average of computational cost low. We apply these methods for computing steady state solutions of incompressible flow problems modelled by the Navier-Stokes equations, for solving the Schrödinger equation using the Kohn-Sham formulation and for solving elliptic equations using multigrid methods. In all cases, vector extrapolation methods have a useful role to play. We show that, when applied to linearly generated vector sequences, extrapolation methods are related to Krylov subspace methods. For example, we show that the MMPE approach is mathematically equivalent to CMRH method. We present an implementation of the CMRH iterative method suitable for parallel architectures with distributed memory. Finally, we present a preconditioned CMRH method.
|
3 |
Transformation de Aluthge et vecteurs extrémaux / Aluthge Transform and Extremal VectorsVerliat, Jérôme 21 December 2010 (has links)
Cette thèse s'articule autour de deux thèmes : une transformation de B(H) introduite par Aluthge et la méthode d'Ansari-Enflo. La première partie fait l'objet de l'étude de la transformation d’Aluthge qui a eu un impact important ces dernières années en théorie des opérateurs. Des résultats optimaux sur la stabilité d'un certain nombre de classes d'opérateurs, telles que la classe des isométries partielles et les classes associées au comportement asymptotique d'un opérateur, sont fournis. Nous étudions également l'évolution d'invariants opératoriels, tels que le polynôme minimal, la fonction minimum, l'ascente et la descente, sous l'action de la transformation ; nous comparons plus précisément les suites des noyaux et images relatives aux itérés d'un opérateur et de sa transformée de Aluthge. La deuxième partie est l'occasion d'étudier la théorie d'Ansari-Enflo, qui a permis de gros progrès pour le problème du sous-espace hyper-invariant. Nous développons plus particulièrement la notion fondatrice de la méthode, celle de vecteur extrémal. La localisation et une nouvelle caractérisation de ces vecteurs sont données. Leur régularité et leur robustesse, au regard de différents paramètres, sont éprouvées. Enfin, nous comparons les vecteurs extrémaux d'un shift à poids et ceux associés à sa transformée d’Aluthge. Cette étude aboutit à la construction d'une suite de vecteurs extrémaux associés aux itérés de la transformation d’Aluthge, pour laquelle certaines propriétés sont mises en évidence. / This thesis is based on two topics : a transformation of B(H) introduced by Aluthge and the Ansari-Enflo method. In the first part, we study the Aluthge transformation which really had an impact on operator theory in the past ten years. Some optimal results about stability for several operators classes, such as isometries class and classes of operators defined by their asymptotic behaviour, are given. We also study changes generated by Aluthge transform about some usual tools in operator theory like minimum polynomial, minimum function, ascent and descent ; precisely, we compare iterated kernels and iterated ranges sequences related to an operator and to its Aluthge transform. The second part is devoted to the study of the Ansari-Enflo theory, which allowed to make progress in the hyper-invariant subspace problem. We develop the notion of extremal vectors which is the fundamental point of the theory. We clarify their spatial localization and a new caracterisation for these vectors is given. Regularity and robustness with regard to different parameters are tried and tested. Finally, we compare extremal vectors associated with weighted shifts and the one corresponding to their Aluthge transform. This study leads to build a sequence of extremal vectors associated with the iterated Aluthge transform, for which we highlight several properties.
|
Page generated in 0.0448 seconds