• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 14
  • 7
  • 5
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 32
  • 32
  • 15
  • 12
  • 8
  • 7
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

The effects of rapid mixing on the coagulation and sedimentation of ultra-fine coal and clay particles

Jones, Letitia Power January 1982 (has links)
As a consequence of new coal mining practices, coal preparation plants have been inundated with increased loads of coal and clay particles in their wastewaters. Traditionally, the industry has employed primary sedimentation as the fundamental treatment scheme for these sediment-laden blackwaters. This study was undertaken to determine the effects of a combination of coagulant addition and rapid mixing on the settleability of these particles. After initial testing, aluminum sulfate and two low molecular weight cationic polymers, Cyanamid Magnifloc 513C and Cyanamid 515C, were chosen as primary coagulants for use in this work. An artificial wastewater was prepared from finely powdered (62 to <38 microns) raw coal samples and tap water, after initial tests indicated that typical frothing and/or collector agents had no demonstrable effect on coagulant function. Initially determined optimum coagulant dosages, as well as flocculation and sedimentation times, were kept constant while rapid mix intensities were varied at G values of 330 sec⁻¹, 700 sec⁻¹, 2000 sec⁻¹ and 7000 sec⁻¹ for each sample. Using a combination of residual turbidity and particle size analyses to determine the effectiveness of each rapid mix intensity, it was discovered that only the highest mixing intensities and durations (G(t) values) caused floe disintegration due to overmixing. At the lower G(t) matrices floe formation and settleability was consistently good. When aluminum sulfate was used as a coagulant, the wastewater was tested at a high pH of 8.1 to 8.3 and a low pH of 5.5 to observe floe behavior under different conditions of coagulant mechanism. The test results were similar for both pH values except at the lowest mixing intensities where the high pH samples settled well, resulting in low residual turbidities, but the low pH samples had relatively high turbidities. / Master of Science
22

Designing a Comprehensive, Integrated Approach for Environmental Research Translation: The Gardenroots Project to Empower Communities Neighboring Contamination

Ramirez-Andreotta, Monica D. January 2012 (has links)
Challenges at hazardous waste and contaminated sites are persistent, complex, and multifactorial, and unfortunately the progress in implementing solutions is slow. This delay can be attributed to the lack of collaboration, information transfer to the end-user, and partnership building among academia, government and the affected community. As a solution, Environmental Research Translation (ERT), a framework that is rooted in existing participatory models, and encompasses many of the key principles from informal science education and community-based participatory research is proposed. The ERT framework lead to a community-academic partnership called: Gardenroots: The Dewey-Humboldt, Arizona Garden Project. Vegetable gardening in contaminated soils presents a health hazard. A controlled greenhouse study was conducted in parallel with a co-created citizen science program to characterize the uptake of arsenic by homegrown vegetables near the Iron King Mine and Humboldt Smelter Superfund Site in Arizona. Community members, after training, collected soil, water and vegetable samples from their household garden. The greenhouse and home garden arsenic soil concentrations ranged from 2.35 to 533 mg kg⁻¹. In the greenhouse experiment four vegetables were grown in three different soil treatments and a total of 63 home garden produce samples were obtained from 19 properties neighboring the site. All vegetables accumulated arsenic, ranging from 0.01 - 23.0 mg kg⁻¹ dry weight. Bioconcentration factors were determined and arsenic uptake decreased in the order: Asteraceae > Brassicaceae >> Amaranthaceae > Cucurbitaceae > Liliaceae > Solanaceae > Fabaceae. Concentrations of arsenic measured in potable water, soils and vegetable samples were used in conjunction with reported US intake rates to calculate daily dose, excess cancer risk and Hazard Quotient for arsenic. Relative arsenic intake dose decreased in order: potable water > garden soils > well washed homegrown vegetables, and on average, each accounted for 79, 14 and 7%, of a residential gardener's daily arsenic intake dose. The IELCR ranges for vegetables, garden soils and potable water were 10⁻⁸ to 10⁻⁴, 10⁻⁶ to 10⁻⁴; and 10⁻⁵ to 10⁻², respectively. The ERT framework improved environmental health research, information transfer, and risk communication efforts. Incorporating the community in the scientific process lead to individual learning and community-level outcomes.
23

Temperature Dependency of the Rheological Properties and Strength of Cemented Paste Backfill That Contains Sodium Silicate

Ali, Ghada Abdulbaqi 12 April 2021 (has links)
Over the past decades, cemented paste backfill (CPB) has become a common, environmentally friendly method of managing mine wastes (such as tailings). This technology allows up to 60% of the total amount of tailings to be reused and filled in the mine stopes after converting them into cemented material. Beside reducing the environmental risks associated with the traditional disposal of these materials, turning them into cemented material and placing them in the underground mine stopes can also provide secondary support for these stopes in addition to minimizing the risk of ground subsidence in the mine area. CPB is an engineered mixture of tailings, water, and hydraulic binder (such as cement, blast furnace slag, and fly ash) that is mixed in the paste plant and delivered into the mine stopes through a gravity or pumping based transportation system. During the transportation of CPB through the delivery system pipelines, the flowability of CPB depends on the rheology of the transported CPB, which is affected by different factors, such as the transportation time, temperature variation, binder type, and chemical composition of these mixtures. In addition, the performance of CPB, after placing the CPB mixture into the mine stopes, is mainly dependent on the role of the hydraulic binder, as it increases the mechanical strength of the mixture through the process of cement hydration. The mechanical strength is also influenced by different factors, such as time progress, temperature variation, and presence of chemical additives. It has previously been found that fresh CPB transported and/or placed in the mine stopes can be susceptible to temperature variation of different sources, such as the climatic effects, heat generated from the surrounding rocks, and heat generated during the process of cement hydration. Unsuitable flowability of CPB through the delivery system might lead to significant financial losses due to clogging of pipelines with unexpected hardening of CPB during transportation, which will cause delay in work and possible damages to the pipelines. Also, failure of CPB structure in the mine stopes due to inappropriate mechanical strength may cause casualties to the mine workers as well as significant environmental and economic damages. Many researchers studied the rheological properties and/or strength development of CPB under the individual effect of any of the aforementioned factors. Additionally, many researchers have evaluated the coupled effect of some of these factors on the rheology and mechanical strength of CPB material. Hitherto, there are currently no studies that addressed the combined effect of all these conditions on the rheological properties and strength development of CPB. At the first stage of this M.A.Sc. study, a series of experimental tests was conducted on fresh CPB in order to determine the combined effect of time, temperature, binder content, and chemical additives on the rheological properties of CPB. These experiments include rheological properties test (yield stress and viscosity), microstructural analysis (thermal analysis and XRD), chemical analysis (pH and Zeta potential), and monitoring tests (electrical conductivity), which were conducted on 125 CPB samples that were mixed and prepared at different temperatures (2oC, 20oC, 35oC) and cured for different curing time (0 hrs., 0.25 hrs., 1 hr., 2hrs, and 4 hrs.). These samples were prepared with different blends of hydraulic binders (PCI, PCI/Slag, and PCI/FA) and contained different dosages of sodium silicate (0%, 0.1%, 0.3%, and 0.5%). The results obtained show that rheology of CPB increases with the progress of curing time. It also increases with the increase in the initial (mixing and curing) temperature and content of sodium silicate. It was also found that the partial usage of slag and FA reduces the rheological properties. However, CPBs containing PCI/FA as binder have lower rheological properties, and thus better flowability, than those that contain PCI/Slag as binder. At the second stage of this M.A.Sc. study, in order to understand the combined effect of time, temperature and sodium silicate content on the strength development of slag-CPB, unconfined compression (UCS) test, microstructural analysis (thermal analysis and MIP), and monitoring tests (electrical conductivity, suction, and volumetric water content) were conducted on 72 CPB samples that were prepared with PCI-Slag as a binder, cured for different times (1 day, 3 days, 7 days, and 28 days) under different curing temperatures of (2oC, 20oC, 35oC), and contained different dosages of sodium silicate (0%, 0.3% and 0.5%). The results obtained at this stage showed that the strength development of slag-CPB increases with the progress of curing time and temperature. It also increases with the increase in the sodium silicate content. Also, the combined effect of high temperature, high dosage of sodium silicate and longer curing time showed significant enhancement in the mechanical strength of slag-CPB. The findings of this M.A.Sc. research will contribute to cost effective, efficient, and safer design of CPB structures in the mine areas. It will also help in minimizing financial loss associated with unsuitable flowability of CPB transported in the CPB delivery system besides reducing the risks of human loss, and the environmental and economic damages associated with the failure of CPB structures.
24

Zeitliche und räumliche Prognose der Stabilität von Braunkohletagebaukippen im Nordraum Lausitz mit künstlichen neuronalen Netzen

Barth, Andreas, Kallmeier, Enrico, Böhnke, Robert, Lucke, Beate January 2016 (has links)
Mittels künstlichen neuronalen Netzen wurden die in den rekultivierten Tagebaukippen im Nordraum Lausitz (Tagebaue Schlabendorf und Seese) auftretenden Geländedeformationen infolge Bodenverflüssigung für die Jahre 2009 - 2013 als Zeitreihe modelliert. Das Modell ist in der Lage, grob die zeitliche Entwicklung und exakt die räumliche Lage des in den Kippen auftretenden Gefährdungspotenzials nachzuvollziehen und als Funktion des sich ändernden Grundwasserspiegels und der sich ändernden Oberflächenmorphologie in die Zukunft zu prognostizieren. Das Modell zeigt dynamisch das Entstehen neuer Risikoflächen in bisher scheinbar stabilen Bereichen des Untersuchungsgebietes. Die Korrektheit des Modells wurde mittels verschiedener Tests geprüft sowie anhand einer Prognoserechnung für das Jahr 2014 und des Vergleichs mit den real in 2014/2015 gegangenen Ereignissen nachgewiesen. Folgende Gefährdungsfaktoren wurden ermittelt: Destabilisierend wirken eine möglichst einförmige Lithologie folgender Zusammenset-zung: 31 % Feinsand, 34 % Mittelsand, 31 % Grobsand, 3 % Schluff, < 1 % Kies, < 1 % Kalk, < 1 % Ton, < 1 % Kohle, kf-Werte zwischen 10-4 und 10-4,5 m/s, ein Grundwasserflurabstand bei 3,45 m (Medianwert), möglichst hohe Gradienten der nicht lithologisch kontrollierten Parameter: Tagebauoberfläche, Grundwasseroberfläche, Grundwasserflurabstand und Mächtigkeit der gesättigten Kippe. Stabilisierend wirken vor allem eine möglichst große Heterogenität der Lithologie auf kleinem Raum (möglichst hohe Gradienten der lithologisch kontrollierten Parameter (z.B. Kiesgehalt, Sandgehalt, Tongehalt, Kohlegehalt)), ein möglichst geringer Sandanteil, möglichst hohe Anteile an Kies, Schluff, Ton, Kalk, bzw. Kohle, ein möglichst großer Grundwasserflurabstand sowie möglichst geringe Gradienten der nicht lithologisch kontrollierten Parameter: Tagebauoberfläche, Grundwasseroberfläche, Grundwasserflurabstand, Mächtigkeit der gesättigten Kippe sowie wechselnde kf-Werte 10-7 bzw. >10-2 m/s. Für die Bearbeitung wurden ausschließlich die bei der LMBV vorhandenen bzw. laufend flächendeckend erhobenen Daten genutzt: Lage des Grundwasserspiegels, Relief der Tagebauoberfläche, Liegendes der Kippe, geologische Daten der Vorfeldbohrungen. Das Modell kann als dynamisches Instrument zum Risikomanagement vor bzw. während der Sanierungsmaßnahmen genutzt werden. Mittels der Variation der prozesskontrollie-renden Parameter können die geotechnischen Auswirkungen verschiedener Sanierungsszenarien (z.B. Gestaltung der Tagebauoberfläche, Schüttung der Kippen, Grundwasseranstieg) auf die Stabilität der Kippen prognostiziert werden. / Geotechnical events (terrain deformation due to soil liquefaction) in lignite mining waste rock piles of the northern Lausitz area (opencast pits Schlabendorf and Seese), have been modeled as time series for the years 2009 – 2013 by using artificial neural networks. The model has clearly recognized the influences of various lithological and non-lithological controlled parameters on the occurrence of geotechnical events, and these have been quantified and weighted in terms of their importance. The model is able to predict the tem-poral evolution and the exact spatial location of the events occurring in the dumps as a function of changing groundwater levels and surface morphology. The model shows dynamically the emergence of new risk areas in hitherto seemingly stable areas. The correctness of the model was confirmed by means of various tests and its predictive success was demonstrated through forecasting of events for the years 2014 and 2015 and their comparison with the observed events of those years. The following main risk factors were identified: Important destabilizing factors are a monotonous lithology with the following composition: 31% fine sand, 34% medium sand, 31% coarse sand, 3% silt, <1% gravel, <1% lime, <1% clay, <1% coal, kf-values between 10-4 and 10-4.5 m/s, a surface to groundwater distance of 3.45 meters (median value), high gradients of non-lithological controlled parameters: waste dump surface, groundwater level, depth to groundwater and thickness of saturated dump. 2. Important stabilizing factors are a high heterogeneity of lithology (high gradients of the lithological controlled parameters: e.g. gravel content, sand content, clay content, carbon content), a low proportion of sand in the dump composition, high proportions of gravel, silt, clay, lime, or coal, a high depth to groundwater, low gradients of non-lithological controlled parameters: open pit surface, groundwater surface, depth to groundwater, thickness of saturated dump, strongly changing kf values between 10-7 and 10-2 m/s. The model can be used as a dynamic tool for risk management before and during the re-habilitation of lignite waste dumps, and for constructing stable waste dumps. By means of varying the model parameters (e.g. design of the dump surface, composition of dumped rocks, rising groundwater) the geotechnical effects of dump design and remediation scenarios can be predicted.
25

Estudo do potencial de utiliza??o do res?duo da extra??o de esmeraldas na fabrica??o de cer?mica de revestimento / Study of the potential use of waste from the extraction of emerald in the manufacture of ceramic tile

Cavalcante, Ronaldo Fonseca 09 March 2010 (has links)
Made available in DSpace on 2014-12-17T14:57:56Z (GMT). No. of bitstreams: 1 RonaldoFC_DISSERT.pdf: 4616662 bytes, checksum: 0873d4d0b759a28864c474fb890be216 (MD5) Previous issue date: 2010-03-09 / Universidade Federal do Rio Grande do Norte / Companies involved in emerald mining and treatment represent an important area of industrial development in Brazil, with significative contribution to the worldwide production of such mineral. As a result, large volumes of emerald waste are constantly generated and abandoned in the environment, negatively contributing to its preservation. By the other side the interest of the use of mining waste as additive in ceramic products has been growing from researchers in recent years. The ceramic industry is constantly seeking to the marked amplification for the sector and perfecting the quality of the products and to increase the variety of applications. The technology of obtaining of ceramic tiles that uses mining residues assists market niches little explored. In this scenario, the objective of the present study was to characterize the residue generated from emerald mining as well as to assess its potential use as raw material for the production of ceramic tiles. Ceramic mixtures were prepared from raw materials characterized by X-ray fluorescence, X-ray diffraction, particle size analysis and thermal analysis. Five compositions were prepared using emerald residue contents of 0%, 10%, 20%, 30% and 40%. Samples were uniaxially pressed, fired at 1000, 1100 and 1200?C and characterized aiming at establishing their mineralogical composition, water absorption, apparent porosity, specific mass, linear retraction and modulus of rupture. The results shows that the emerald residue, basically consisted of 73% of (SiO2 + Al2O3) and 17,77% of (MgO + Na2O+ K2O) (that facilitates sintering), can be added to the ceramic tile materials with no detrimental effect on the properties of the sintered products / Empresas envolvidas na minera??o de esmeralda e beneficiamento representam uma importante ?rea de desenvolvimento industrial no Brasil, com significativa contribui??o para a produ??o mundial desse min?rio. Como resultado, grandes volumes de res?duos de esmeralda s?o constantemente gerados e abandonados no ambiente, contribuindo negativamente para a sua preserva??o. Por outro lado o interesse no uso do res?duo de minera??o como aditivo na produ??o de material cer?mico tem crescido entre os pesquisadores nos ?ltimos anos. A ind?stria cer?mica est? constantemente buscando a amplia??o do mercado para o setor e tentando aperfei?oar a qualidade dos produtos e aumentar a variedade de aplica??es. A tecnologia de obten??o de cer?mica de revestimento que usa res?duos de minera??o ? um mercado ainda pouco explorado. Neste cen?rio, o objetivo do presente estudo foi caracterizar o res?duo gerado a partir de minera??o de esmeralda, bem como para avaliar seu potencial uso como mat?ria-prima para a produ??o de revestimentos cer?micos. Misturas cer?micas foram preparadas a partir de mat?rias-primas caracterizadas por fluoresc?ncia de raios X, difra??o de raios X, an?lise granulom?trica e an?lise t?rmica. Cinco composi??es foram preparadas utilizando ?ndices de res?duos de esmeraldas de 0%, 10%, 20%, 30% e 40%. As amostras foram prensadas uniaxialmente, sinterizadas em 1000, 1100 e 1200 ? C e caracterizadas visando estabelecer sua composi??o mineral?gica, absor??o de ?gua, porosidade aparente, massa espec?fica, retra??o linear e m?dulo de ruptura. Os resultados mostraram que o res?duo de esmeraldas composto basicamente de 73% de (SiO2 + Al2O3) e 17,77% de (MgO+Na2O+K2O) (que facilitam a sinteriza??o) pode ser incorporado na massa de revestimento cer?mico sem comprometimento das propriedades do produto sinterizado
26

Distribution and chemical association of trace elements in incinerator residues and mining waste from a leaching perspective

Saqib, Naeem January 2016 (has links)
Incineration is a mainstream strategy for solid waste management in Sweden and all over the world. Improved knowledge and understanding about the distribution of trace elements (in ashes) during incineration, and how trace element partitioning respond to the changes in waste composition, are important in terms of combustion process optimization and plant efficiency. Moreover, determination of chemical association of trace elements in ashes are vital for avoiding environmental concerns and to promote possible reuse. In this study, partitioning of trace elements in ashes during incineration as function of input waste fuel and incineration technology was investigated. Further, chemical association of trace elements in resulting ashes was studied. An evaluation was also performed about feasibility of metal extraction from sulfidic mining waste and flotation tailings. Moreover, green liquor dreg (GLD) was tested with respect to stabilization of metals within the sulfidic mining waste. Findings showed that the total input of trace elements and chlorine affects the partitioning and increasing chlorine in the input waste caused increase in transfer of trace elements to fly ash especially for lead and zinc. Vaporization, condensation on fly ash particles and adsorption mechanisms play an important role for metal distribution. Firing mixed waste, especially biofuel mix, in grate or fluidized (CFB) boilers caused increased transfer into fly ash for almost all trace elements particularly lead and zinc. Possible reasons might be either an increased input concentration of respective element in the waste fuel, or a change in volatilization behavior due to the addition of certain waste fractions. Chemical association study for fly ashes indicated that overall, Cd, Pb, Zn, Cu and Sb are presenting major risk in most of the fly ashes, while in bottom ashes, most of elements are associated with stable fraction. Further, fuel type affects the association of elements in ashes. Chemical leaching of mining waste materials showed that sulfuric acid (under different conditions) is the best reagent to recover zinc and copper from sulfidic mining waste and also copper from flotation tailings. GLD indicates potential for metal stabilization in mining waste by reducing the metal mobility. Extraction methods could be applied to treat mining waste in order to meet the regulatory level at a specific mining site.Similarly stabilization/solidification  methods might be applied after leaching for recovery of metals.
27

[en] BEHAVIOR OF A REINFORCEMENT LANDFILL FOR MINING WASTE CONTAINMENT BUILT ON SOFT SOILS / [pt] COMPORTAMENTO DE UM ATERRO DE REFORÇO PARA CONTENÇÃO DE RESÍDUOS DE MINERAÇÃO CONSTRUÍDO SOBRE SOLOS MOLES

MIRYAN YUMI SAKAMOTO 26 June 2023 (has links)
[pt] Na presente pesquisa, foi realizada a interpretação de comportamento da obra de reforço em um dique de contenção para resíduos de mineração construído sobre solos moles. Foram definidos o perfil geotécnico e as etapas de alteamento a serem analisadas pelo método de elementos finitos, no software Plaxis 2D. Para definição dos parâmetros, foram interpretados ensaios de campo e laboratório, sendo que nos ensaios de laboratório em que as curvas eram conhecidas, foi possível aplicar a otimização de parâmetros com a simulação de ensaios em uma extensão do Plaxis (Soil test). No caso dos solos silto arenosos e dos materiais de aterro, as interpretações foram feitas com o modelo Hardening Soil Model. Já para as camadas argilosas, foram simulados cinco diferentes cenários com os modelos: Soft Soil Creep, Hardening Soil e Mohr Coulomb com parâmetros de resistência efetivos e Hardening Soil e Mohr Coulomb com resistência não drenada. Os resultados de deslocamentos foram comparados entre si e com os dados do monitoramento de campo. Para análise da estabilidade os cinco cenários foram comparados entre si e com os resultados de uma análise convencional com equilíbrio limite em termos de tensões totais. Foi realizada também a aplicação do Método dos Volumes Deslocados como uma forma de verificar sua adequação para acompanhamento in situ da estabilidade da obra em cada etapa construtiva. / [en] In this present research, it was done an interpretation of the reinforcement work s behavior in a containment dike/dam for mining waste built on soft soils. It was defined the geotechnical profile and the heightening steps to be performed using the finite element method in the Plaxis 2D software. To define the parameters, the field and laboratory tests were interpreted, and in the laboratory tests in which the curvatures were known, it was possible to apply parameters with the simulation of tests in an extension of Plaxis (Soil test). In the case of sandy silt soils and embankments materials, as was done with the Hardening Soil Model. For the clay layers, five different scenarios were simulated with the models: Soft Soil, Hardening Soil and Mohr Coulomb with effective strength parameters and Hardening Soil and Mohr Coulomb with undrained strength parameters. The displacement results were compared with each other and with field monitoring data. For the stability analysis the five scenarios were analyzed among themselves and with the results of a conventional analysis with limit equilibrium in terms of total strength. Also the application of the Displaced Volumes Method as a way of verifying its suitability to in situ monitoring of the stability of the work at each constructive stage.
28

Soil Moisture Sensing in Mining Waste Rock: Comparing Calibration Curves of Multiple Low-Cost Capacitance Sensors and a Single TDR Sensor / Mätning av vatteninnehåll i gruvavfall: En jämförelse av kalibreringskurvor för flera billiga kapacitanssensorer och en enda TDR-sensor

Jørgensen, Rasmus January 2022 (has links)
Measuring soil moisture content (SMC) in mining waste rock is important for assessing and modelling hydrological processes which influence pollutant release. Here, an experimental setup containing mining waste rock is established to compare the performance of 4 Arduino capacitance moisture sensors to one single Time Domain Reflectometry (TDR) sensor. Furthermore, the performance of these sensors is evaluated in both sieved and unsieved mining waste rock. Fitted calibration curves are provided for both the TDR- and Arduino-sensors individually and in combination. These calibration curves are evaluated using the RMSE and R 2 of each curve and compared between sensors and soil texture. It is concluded that using more capacitance sensors significantly improves the fit statistics of the calibration curves and that using at least 4 capacitance sensors can enhance calibration curve fitting. For both the TDR and capacitance sensors, the calibration curves in sieved soil provided the best fit, meaning that soil specific calibration of sensors is recommended. On a sensor individual basis, the temporal precision of the TDR sensor was superior to each individual capacitance sensor. Use of 4 or more Arduino capacitance sensors may especially be justified in circumstances where the spatial variability of SMC is addressed by executing a large number of measurements. Here, the feasibility of the Arduino sensor system means that the use of these low-cost sensors, despite their reduced temporal precision, can be upscaled at relatively small costs.
29

Investigation into the technical feasibility of biological treatment of precious metal refining wastewater

Moore, Bronwyn Ann January 2013 (has links)
The hydrometallurgical refining of platinum group metals results in large volumes of liquid waste that requires suitable treatment before any disposal can be contemplated. The wastewater streams are characterized by extremes of pH, high inorganic ion content (such as chloride), significant residual metal loads and small amounts of entrained organic compounds. Historically these effluents were housed in evaporation reservoirs, however lack of space and growing water demands have led Anglo Platinum to consider treatment of these effluents. The aim of this study was to investigate whether biological wastewater treatment could produce water suitable for onsite reuse. Bench-scale activated sludge and anaerobic digestion for co-treatment of an acidic refinery waste stream with domestic wastewater were used to give preliminary data. Activated sludge showed better water treatment at lab scale in terms of removal efficiencies of ammonia (approximately 25%, cf. 20% in anaerobic digestion) and COD (70% cf. 43% in digestion) and greater robustness when biomass health was compared. Activated sludge was consequently selected for a pilot plant trial. The pilot plant was operated on-site and performed comparably with the bench-scale system, however challenges in the clarifier design led to losses of biomass and poor effluent quality (suspended solids washout). The pilot plant was unable to alter the pH of the feed, but a two week maturation period resulted in the pH increasing from 5.3 to 7.0. Tests on algal treatment as an alternative or follow-on unit operation to activated sludge showed it not to be a viable process. The activated sludge effluent was assessed for onsite reuse in flotation and it was found that there was no significant difference between its flotation performance and that of the process water currently used, indicating the effluent generated by the biological treatment system can be used successfully for flotation. Flotation is the method whereby minerals refining operations recover minerals of interest from ore through the addition of chemicals and aeration of the ore slurry. Target minerals adhere to the bubbles and can be removed from the process.
30

Potential för produktion av surt lakvattten och kvantifiering av kvävelakning från restprodukter från gruvindustrin: En fallstudie från Kiirunavaara-gruvan / Potential for Production of Acid Mine Drainage and Quantification of Nitrogen Leakage in Mine Wastes: A Case Study from the Kiirunavaara mine in Sweden

Smedborn Paulsson, Eva January 2016 (has links)
Gruvavfall, i form av gråberg, från Kiirunavaara-gruvan i Kiruna, norra Sverige undersöktes för att se om surt lakvatten kan bildas från gråberget och om detta kan ha en påverkan på hur mycket kväve som kan lakas ut från gråberget. För detta ändamål gjordes dels en mineralogisk undersökning av gråberget, med siktning, röntgendiffraktion (XRD) och grundämnesanalys och dels laborativa skakförsök. Från skakförsöken, där olika kornstorlekar (8-16 mm, 2-4 mm och mindre än 1 mm) blandades med avjoniserat vatten med L/S-kvoten 10, kunde förändringar i pH, alkalinitet och lösta joner undersökas över en 10-veckors period.                       De främsta mineralen i gråberget i Kiirunavaara visades vara plagioklas, kvarts och biotit. I gråberget finns även 18 g pyrit/kg gråberg. Skakförsöken indikerar att lakvattnet från gråberget i Kiirunavaara är alkaliskt med ett pH över 9. Vittring av sulfidmineral sker, men neutraliseras av buffrande mineral som kalcit och ingen potential till produktion av surt lakvatten finns. Kväveutlakningen sker främst under de första dygnen, men mer än hälften av de kväveföreningar som antas finnas i gråberget lakas inte ut. Både nitrat och ammonium visade signifikanta korrelationer med pH, där högre pH-värden tydde på högre nitratkoncentrationer och lägre pH-värden på högre ammoniumkoncentrationer. Detta indikerar att även om inget samband kunde ses mellan produktion av surt lakvatten och kväveutlakning, så är mängden av olika kväveföreningar som lakas ut beroende av lakvattnets pH-värde. / Mining waste rock from the Kiirunavaara-mine in northern Sweden was studied to determine if there is a potential for production of acid mine drainage (AMD), if there is a leaching of nitrogen compounds from the waste rock and if a correlation between the two processes can be seen. A mineralogical characterization of the waste rock was done through dry sieving, X-Ray Diffraction (XRD) and elemental analysis. Through shake flask experiments, where waste rock of three different grain sizes (8-16 mm, 2-4 mm and less than 1 mm) were mixed with deionized water (L:S-ratio of 10), the change in pH, alkalinity and dissolved ions during a 10-week period was determined.                       The waste rock in Kiirunavaara was found to consist mainly of plagioclase, quartz and biotite, but the waste rock also contains 18 g pyrite per kg waste rock. The shake flask experiments indicate that the mine drainage from the waste rock in Kiirunavaara is alkaline, with a pH above 9. Weathering of sulphide minerals occur, but are neutralised by buffering minerals such as calcite and thus no potential for AMD-production exists. The leaking of nitrogen compounds occurs mainly during the first few days. Both ammonium and nitrate showed significant correlations with pH, where lower pH-values typically exhibited higher ammonium concentrations, while higher pH-values correlated with higher nitrate concentrations.

Page generated in 0.0669 seconds