Spelling suggestions: "subject:"minkowski space"" "subject:"linkowski space""
11 |
Geometric Steiner minimal treesDe Wet, Pieter Oloff 31 January 2008 (has links)
In 1992 Du and Hwang published a paper confirming the correctness of a well
known 1968 conjecture of Gilbert and Pollak suggesting that the Euclidean
Steiner ratio for the plane is 2/3. The original objective of this thesis was to
adapt the technique used in this proof to obtain results for other Minkowski
spaces. In an attempt to create a rigorous and complete version of the proof,
some known results were given new proofs (results for hexagonal trees and
for the rectilinear Steiner ratio) and some new results were obtained (on
approximation of Steiner ratios and on transforming Steiner trees).
The most surprising result, however, was the discovery of a fundamental
gap in the proof of Du and Hwang. We give counter examples demonstrating
that a statement made about inner spanning trees, which plays an important
role in the proof, is not correct. There seems to be no simple way out of
this dilemma, and whether the Gilbert-Pollak conjecture is true or not for
any number of points seems once again to be an open question. Finally we
consider the question of whether Du and Hwang's strategy can be used for
cases where the number of points is restricted. After introducing some extra
lemmas, we are able to show that the Gilbert-Pollak conjecture is true for 7
or fewer points. This is an improvement on the 1991 proof for 6 points of
Rubinstein and Thomas. / Mathematical Sciences / Ph. D. (Mathematics)
|
12 |
Curvas no espaço de Minkowski / Curves in the Minkowski spaceSacramento, Andrea de Jesus 27 March 2015 (has links)
Nesta tese, investigamos a geometria de curvas no 3-espaço e no 4-espaço de Minkowski usando a teoria de singularidades, mais especificamente, a teoria de contato. Para isto, estudamos as famílias de funções altura e de funções distância ao quadrado sobre as curvas. Os conjuntos discriminantes e conjuntos de bifurcação destas famílias são ferramentas essenciais para o desenvolvimento deste trabalho. Para curvas no 3-espaço de Minkowski, estudamos seus conjuntos focais e conjunto de bifurcação da família de funções distância ao quadrado sobre estas curvas para investigar o que acontece próximo de pontos tipo luz. Estudamos também os conjuntos focais e conjuntos de bifurcação esféricos de curvas nos espaços de Sitter do 3-espaço e do 4-espaço de Minkowski. Definimos imagens normal Darboux pseudo-esféricas de curvas sobre uma superfície tipo tempo no 3-espaço de Minkowski e estudamos as singularidades e propriedades geométricas destas imagens normal Darboux. Além disso, investigamos a relação da imagem normal Darboux de Sitter (hiperbólica) de uma curva tipo espaço em S21 com a superfície tipo luz ao longo desta curva tipo espaço. Definimos as superfícies horoesférica e dual hiperbólica de curvas tipo espaço no espaço de Sitter S31 e estudamos estas superfícies usando técnicas da teoria de singularidades. Damos uma relação entre estas superfícies do ponto de vista de dualidades Legendrianas. Finalmente, consideramos curvas sobre uma hipersuperfície tipo espaço no 4-espaço de Minkowski e definimos a superfície hiperbólica desta curva. Estudamos a geometria local da superfície hiperbólica e da curva hiperbólica, que é definida como sendo o local das singularidades da superfície hiperbólica. / We study in this thesis the geometry of curves in Minkowski 3-space and 4-space using singularity theory, more specifically, the contact theory. For this we study the families of height functions and of the distance square functions on the curves. The discriminant sets and bifurcation sets of these families are essential tools in our work. For curves in Minkowski 3-space, we study their focal sets and the bifurcation set of the family of the distance square functions on these curves in order to investigate what happens near the lightlike points. We also study the spherical focal sets and bifurcation sets of curves in the de Sitter space in Minkowski 3-space and 4-space. We define pseudo-spherical normal Darboux images of curves on a timelike surface in Minkowski 3-space and study the singularities and geometric properties of these normal Darboux images. Furthermore, we investigate the relation of the de Sitter (hyperbolic) normal Darboux image of a spacelike curve in S21 with the lightlike surface along this spacelike curve. We define the horospherical and hyperbolic dual surfaces of spacelike curves in de Sitter space S31 and study these surfaces using singularity theory technics. We give a relation between these surfaces from the view point of Legendrian dualities. Finally, we consider curves on a spacelike hypersurface in Minkowski 4-space and define the hyperbolic surface of this curve. We study the local geometry of the hyperbolic surface and of the hyperbolic curve that is defined as being the locus of singularities of the hyperbolic surface.
|
13 |
Volumes e curvaturas médias na geometria de Finsler:superfícies mínimas / Volumes and means curvatures in Finsler geometry: minimal surfacesChavéz, Newton Mayer Solorzano 16 April 2012 (has links)
Submitted by Cássia Santos (cassia.bcufg@gmail.com) on 2014-08-06T11:17:00Z
No. of bitstreams: 2
license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5)
Volumes_e_curvaturas_medias_na_geometria_de_finsler.pdf: 818570 bytes, checksum: fce77ff7f92ae9cc2bf9af2aa0318c4c (MD5) / Made available in DSpace on 2014-08-06T11:17:00Z (GMT). No. of bitstreams: 2
license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5)
Volumes_e_curvaturas_medias_na_geometria_de_finsler.pdf: 818570 bytes, checksum: fce77ff7f92ae9cc2bf9af2aa0318c4c (MD5)
Previous issue date: 2012-04-16 / In Finsler geometry, we have several volume forms, hence various of mean curvature
forms. The two best known volumes forms are the Busemann-Hausdorff and Holmes-
Thompson volume form. The minimal surface with respect to these volume forms are
called BH-minimal and HT-minimal surface, respectively. Let (R3; eFb) be a Minkowski
space of Randers type with eFb = ea+eb; where ea is the Euclidean metric and eb = bdx3;
0 < b < 1: If a connected surface M in (R3; eFb) is minimal with respect to both volume
forms Busemann-Hausdorff and Holmes-Thompson, then up to a parallel translation of
R3; M is either a piece of plane or a piece of helicoid which is generated by lines screwing
along the x3-axis. Furthermore it gives an explicit rotation hypersurfaces BH-minimal
and HT-minimal generated by a plane curve around the axis in the direction of eb] in
Minkowski (a;b)-space (Vn+1; eFb); where Vn+1 is an (n+1)-dimensional real vector
space, eFb = eaf eb
ea ; ea is the Euclidean metric, eb is a one form of constant length
b = kebkea; eb] is the dual vector of eb with respect to ea: As an application, it give us an
explicit expression of surface of rotation “ forward” BH-minimal generated by the rotation
around the axis in the direction of eb] in Minkowski space of Randers type (V3; ea+eb): / Na Geometria de Finsler, temos várias formas volume, consequentemente várias formas
curvaturas médias. As duas mais conhecidas são as formas de volumes Busemann-
Hausdorff e Holmes-Thompson. As superfícies mínimas com respeito a estes são chamados
superfícies BH-mínimas e HT-mínimas, respectivamente. Seja (R3; eFb) um espaço
de Minkowski do tipo Randers com eFb = ea+eb; onde ea é a métrica Euclidiana e
eb = bdx3;0 < b < 1: Uma superfície em (R3; eFb) conexa M é mínima com respeito a ambas
formas volumes Busemann-Hausdorff e Holmes-Thompson, então a menos de uma
translação paralela de R3; M é parte de um plano ou parte de um helicóide, a qual é gerada
pela rotação de uma reta (perpendicular ao eixo x3) ao longo do eixo x3: Ademais podemos
obter explicitamente hipersuperfícies de rotação BH-mínima e HT-mínima geradas
por uma curva plana em torno do eixo na direção de eb] num espaço (a; b) de Minkowski
(Vn+1; eFb); onde Vn+1 é um espaço vetorial de dimensão (n+1); eFb = eaf eb
ea ; ea é a
métrica Euclidiana, eb é uma 1-forma constante com norma b := kebkea; eb] é o vetor dual
de eb com respeito a a: Como aplicação, se dá uma expressão explícita de superfície de
rotação completa “forward” BH-mínima gerada pela rotação em torno do eixo na direção
de eb] num espaço de Minkowski do tipo Randers (V3; ea+eb):
|
14 |
Geometry of Minkowski Planes and Spaces -- Selected TopicsWu, Senlin 03 February 2009 (has links) (PDF)
The results presented in this dissertation refer to the geometry of Minkowski
spaces, i.e., of real finite-dimensional Banach spaces.
First we study geometric properties of radial projections of
bisectors in Minkowski spaces, especially the relation between the
geometric structure of radial projections and Birkhoff
orthogonality. As an application of our results it is shown that for
any Minkowski space there exists a number, which plays somehow the
role that $\sqrt2$ plays in Euclidean space. This number is referred
to as the critical number of any Minkowski space. Lower and upper
bounds on the critical number are given, and the cases when these
bounds are attained are characterized. Moreover, with the help of
the properties of bisectors we show that a linear map from a normed
linear space $X$ to another normed linear space $Y$ preserves
isosceles orthogonality if and only if it is a scalar multiple of a
linear isometry.
Further on, we examine the two tangent segments from any exterior
point to the unit circle, the relation between the length of a chord
of the unit circle and the length of the arc corresponding to it,
the distances from the normalization of the sum of two unit vectors
to those two vectors, and the extension of the notions of
orthocentric systems and orthocenters in Euclidean plane into
Minkowski spaces. Also we prove theorems referring to chords of
Minkowski circles and balls which are either concurrent or parallel.
All these discussions yield many interesting characterizations of
the Euclidean spaces among all (strictly convex) Minkowski spaces.
In the final chapter we investigate the relation between the length
of a closed curve and the length of its midpoint curve as well as
the length of its image under the so-called halving pair
transformation. We show that the image curve under the halving pair
transformation is convex provided the original curve is convex.
Moreover, we obtain several inequalities to show the relation
between the halving distance and other quantities well known in
convex geometry. It is known that the lower bound for the geometric
dilation of rectifiable simple closed curves in the Euclidean plane
is $\pi/2$, which can be attained only by circles. We extend this
result to Minkowski planes by proving that the lower bound for the
geometric dilation of rectifiable simple closed curves in a
Minkowski plane $X$ is analogously a quarter of the circumference of
the unit circle $S_X$ of $X$, but can also be attained by curves
that are not Minkowskian circles. In addition we show that the lower
bound is attained only by Minkowskian circles if the respective norm
is strictly convex. Also we give a sufficient condition for the
geometric dilation of a closed convex curve to be larger than a
quarter of the perimeter of the unit circle.
|
15 |
Geometric Steiner minimal treesDe Wet, Pieter Oloff 31 January 2008 (has links)
In 1992 Du and Hwang published a paper confirming the correctness of a well
known 1968 conjecture of Gilbert and Pollak suggesting that the Euclidean
Steiner ratio for the plane is 2/3. The original objective of this thesis was to
adapt the technique used in this proof to obtain results for other Minkowski
spaces. In an attempt to create a rigorous and complete version of the proof,
some known results were given new proofs (results for hexagonal trees and
for the rectilinear Steiner ratio) and some new results were obtained (on
approximation of Steiner ratios and on transforming Steiner trees).
The most surprising result, however, was the discovery of a fundamental
gap in the proof of Du and Hwang. We give counter examples demonstrating
that a statement made about inner spanning trees, which plays an important
role in the proof, is not correct. There seems to be no simple way out of
this dilemma, and whether the Gilbert-Pollak conjecture is true or not for
any number of points seems once again to be an open question. Finally we
consider the question of whether Du and Hwang's strategy can be used for
cases where the number of points is restricted. After introducing some extra
lemmas, we are able to show that the Gilbert-Pollak conjecture is true for 7
or fewer points. This is an improvement on the 1991 proof for 6 points of
Rubinstein and Thomas. / Mathematical Sciences / Ph. D. (Mathematics)
|
16 |
Superfícies Helicoidais no espaço Euclidiano e de Minkowski / Helicoidal surfaces in Euclidean space and Minkowski spaceSOUZA, Danillo Flugge de 31 May 2012 (has links)
Made available in DSpace on 2014-07-29T16:02:21Z (GMT). No. of bitstreams: 1
Superficies helicoidais.pdf: 906474 bytes, checksum: 1d89336393ea70fe9a7948ddebe670f9 (MD5)
Previous issue date: 2012-05-31 / In this work, based in [2] and [6] we studies helicoidal surfaces of the Euclidean space
and Minkowski space R31
with prescribed Gaussian or mean curvature given by smooth
functions. In the Minkowski space we consider three especial kinds of helicoidal surfaces,
corresponding to the space-like, time-like or light-like axes of revolution and show some
geometric meanings of the helicoidal surfaces of the space-like type. We also define
certain solinoid (tubular) surfaces around a hyperbolic helix in R31and we study some
of their geometric properties. / Neste trabalho, baseado nos artigos [2] e [6] estudamos superfícies helicoidais no Espaço
Euclidiano e no Espaço de Minkowski R31
com curvatura média ou Gaussiana dada por
funções diferenciáveis. No Espaço de Minkowski R31
, consideramos três tipos especiais
de superfícies helicoidais, correspondendo aos eixos de revolução space-like, time-like
ou light-like e apresentamos alguns significados geométricos de superfícies helicoidais
do tipo space-like. Também definimos superfícies (tubulares) solenóides em torno de uma
hélice hiperbólica em R31
e estudamos algumas de suas propriedades geométricas.
|
17 |
Curvas no espaço de Minkowski / Curves in the Minkowski spaceAndrea de Jesus Sacramento 27 March 2015 (has links)
Nesta tese, investigamos a geometria de curvas no 3-espaço e no 4-espaço de Minkowski usando a teoria de singularidades, mais especificamente, a teoria de contato. Para isto, estudamos as famílias de funções altura e de funções distância ao quadrado sobre as curvas. Os conjuntos discriminantes e conjuntos de bifurcação destas famílias são ferramentas essenciais para o desenvolvimento deste trabalho. Para curvas no 3-espaço de Minkowski, estudamos seus conjuntos focais e conjunto de bifurcação da família de funções distância ao quadrado sobre estas curvas para investigar o que acontece próximo de pontos tipo luz. Estudamos também os conjuntos focais e conjuntos de bifurcação esféricos de curvas nos espaços de Sitter do 3-espaço e do 4-espaço de Minkowski. Definimos imagens normal Darboux pseudo-esféricas de curvas sobre uma superfície tipo tempo no 3-espaço de Minkowski e estudamos as singularidades e propriedades geométricas destas imagens normal Darboux. Além disso, investigamos a relação da imagem normal Darboux de Sitter (hiperbólica) de uma curva tipo espaço em S21 com a superfície tipo luz ao longo desta curva tipo espaço. Definimos as superfícies horoesférica e dual hiperbólica de curvas tipo espaço no espaço de Sitter S31 e estudamos estas superfícies usando técnicas da teoria de singularidades. Damos uma relação entre estas superfícies do ponto de vista de dualidades Legendrianas. Finalmente, consideramos curvas sobre uma hipersuperfície tipo espaço no 4-espaço de Minkowski e definimos a superfície hiperbólica desta curva. Estudamos a geometria local da superfície hiperbólica e da curva hiperbólica, que é definida como sendo o local das singularidades da superfície hiperbólica. / We study in this thesis the geometry of curves in Minkowski 3-space and 4-space using singularity theory, more specifically, the contact theory. For this we study the families of height functions and of the distance square functions on the curves. The discriminant sets and bifurcation sets of these families are essential tools in our work. For curves in Minkowski 3-space, we study their focal sets and the bifurcation set of the family of the distance square functions on these curves in order to investigate what happens near the lightlike points. We also study the spherical focal sets and bifurcation sets of curves in the de Sitter space in Minkowski 3-space and 4-space. We define pseudo-spherical normal Darboux images of curves on a timelike surface in Minkowski 3-space and study the singularities and geometric properties of these normal Darboux images. Furthermore, we investigate the relation of the de Sitter (hyperbolic) normal Darboux image of a spacelike curve in S21 with the lightlike surface along this spacelike curve. We define the horospherical and hyperbolic dual surfaces of spacelike curves in de Sitter space S31 and study these surfaces using singularity theory technics. We give a relation between these surfaces from the view point of Legendrian dualities. Finally, we consider curves on a spacelike hypersurface in Minkowski 4-space and define the hyperbolic surface of this curve. We study the local geometry of the hyperbolic surface and of the hyperbolic curve that is defined as being the locus of singularities of the hyperbolic surface.
|
18 |
Ειδικές επιφάνειες του χώρου Ε3 1 με ΔΙΙΙ r = Ar και διαρμονικές υπερεπιφάνειες Μ23 του χώρου Ε24Πετούμενος, Κωνσταντίνος 20 April 2011 (has links)
Στην παρούσα διδακτορική διατριβή μελετάμε τρία Προβλήματα που αναφέρονται στην Ψευδο-Ευκλείδεια Γεωμετρία. Στα δύο πρώτα Κεφάλαια, Κεφάλαιο 1 και Κεφάλαιο 2 αναφέρουμε γνωστά αποτελέσματα και περιγράφουμε βασικές έννοιες της Ρημάννιας και Ψευδό - Ρημάννιας Γεωμετρίας. Στο Κεφάλαιο 3 μελετάμε επιφάνειες εκ περιστροφής στον τρισδιάστατο Lorentz - Minkowski χώρο ικανοποιώντας δοσμένη γεωμετρική συνθήκη. Στο Κεφάλαιο 4 βρίσκουμε όλες τις κανονικές μορφές του τελεστή σχήματος των τρισδιάστατων υπερεπιφανειών τύπου (-, +, -) του τετρασδιάστατου Ψευδο - Ευκλείδειου χώρου τύπου (-, +, -, +). Τέλος, στο Κεφάλαιο 5 μελετάμε τη σχέση που υπάρχει μεταξύ των διαρμονικών και ελαχιστικών υπερεπιφανειών που αναφέρθηκαν στο Κεφάλαιο 4, χρησιμοποιώντας τον τελεστή σχήματός τους. Ειδικότερα, αποδεικνύουμε ότι κάθε τέτοια διαρμονική υπερεπιφάνεια είναι ελαχιστική. / In the present PH.D. thesis we study three problems referred in the pseudo-Euclidean geometry. In the first two chapters, Chapter 1 and Chapter 2, we review known results and describe the basic notions of the Riemannian and Pseudo-Riemannian geometry. In Chapter 3, we study surfaces of revolution of the three dimensional Lorentz-Minkowski space satisfying given geometric condition. In Chapter 4, we find all the canonical forms of the shape operator of the three dimensional hypersurfaces of signature (-, +, -) of the four dimensional pseudo-Euclidean space of signature (-, +, -, +). Finally, in Chapter 5, we study the relation which exists between the biharmonic and minimal hypersurfaces referred in Chapter 4, by using their shape operator. Precisely, we prove that every such biharmonic hypersurface is minimal.
|
19 |
Surfaces de Cauchy polyédrales des espaces temps plats singuliers / Polyhedral Cauchy-surfaces of flat space-timesBrunswic, Léo 22 December 2017 (has links)
L'étude des espaces-temps plats singuliers munis d'une surface de Cauchy polyédrale est motivée par leur rôle de model jouet de gravité quantique proposé par Deser, Jackiw et 'T Hooft. Cette thèse porte sur les paramétrisations de certaines classes d'espaces-temps plat singuliers : les espaces-temps plats avec particules massives et BTZ Cauchy-compacts maximaux. Deux paramétrisations sont proposées, l'une reposant sur une extension du théorème de Mess aux espaces-temps plats avec BTZ et la surface de Penner-Epstein, l'autre reposant sur une généralisation du théorème d'Alexandrov aux espaces-temps plats avec particules massives et BTZ. Ce travail propose également une amorce de cadre théorique permettant de considérer des espaces-temps singuliers plus généraux. / The study of singular flat spacetimes with polyhedral Cauchy-surfaces is motivated by the quantum gravity toy model role they play in the seminal work of Deser, Jackiw and 'T Hooft. This thesis study parametrisations of classes of singular flat spacetimes : Cauchy-compact maximal flat spacetimes with massive and BTZ-like singularities. Two parametrisations are constructed. The first is based on an extension of Mess theorem to flat spacetimes with BTZ and Penner-Epstein convex hull construction. The second is based on a generalisation of Alexandrov polyhedron theorem to radiant Cauchy-compact flat spacetimes with massive and BTZ-like singularities. This work also initiate a wider theoretical background that encompass singular spacetimes.
|
20 |
Geometry of Minkowski Planes and Spaces -- Selected TopicsWu, Senlin 13 November 2008 (has links)
The results presented in this dissertation refer to the geometry of Minkowski
spaces, i.e., of real finite-dimensional Banach spaces.
First we study geometric properties of radial projections of
bisectors in Minkowski spaces, especially the relation between the
geometric structure of radial projections and Birkhoff
orthogonality. As an application of our results it is shown that for
any Minkowski space there exists a number, which plays somehow the
role that $\sqrt2$ plays in Euclidean space. This number is referred
to as the critical number of any Minkowski space. Lower and upper
bounds on the critical number are given, and the cases when these
bounds are attained are characterized. Moreover, with the help of
the properties of bisectors we show that a linear map from a normed
linear space $X$ to another normed linear space $Y$ preserves
isosceles orthogonality if and only if it is a scalar multiple of a
linear isometry.
Further on, we examine the two tangent segments from any exterior
point to the unit circle, the relation between the length of a chord
of the unit circle and the length of the arc corresponding to it,
the distances from the normalization of the sum of two unit vectors
to those two vectors, and the extension of the notions of
orthocentric systems and orthocenters in Euclidean plane into
Minkowski spaces. Also we prove theorems referring to chords of
Minkowski circles and balls which are either concurrent or parallel.
All these discussions yield many interesting characterizations of
the Euclidean spaces among all (strictly convex) Minkowski spaces.
In the final chapter we investigate the relation between the length
of a closed curve and the length of its midpoint curve as well as
the length of its image under the so-called halving pair
transformation. We show that the image curve under the halving pair
transformation is convex provided the original curve is convex.
Moreover, we obtain several inequalities to show the relation
between the halving distance and other quantities well known in
convex geometry. It is known that the lower bound for the geometric
dilation of rectifiable simple closed curves in the Euclidean plane
is $\pi/2$, which can be attained only by circles. We extend this
result to Minkowski planes by proving that the lower bound for the
geometric dilation of rectifiable simple closed curves in a
Minkowski plane $X$ is analogously a quarter of the circumference of
the unit circle $S_X$ of $X$, but can also be attained by curves
that are not Minkowskian circles. In addition we show that the lower
bound is attained only by Minkowskian circles if the respective norm
is strictly convex. Also we give a sufficient condition for the
geometric dilation of a closed convex curve to be larger than a
quarter of the perimeter of the unit circle.
|
Page generated in 0.1023 seconds