• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 9
  • 2
  • 1
  • Tagged with
  • 14
  • 14
  • 7
  • 6
  • 5
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Managing mission-critical IT in the financial industry

Mårtensson, Anders January 2003 (has links)
In recent years, IT has come to play an important role in companies. So successful execution of business processes often depends on mission-critical IT-solutions. Managing such IT is challenging. Companies have to keep up with rapid developments, but also consider long-term consequences while doing so. How do they survive in the long run without surrendering in the short run? What should be done in-house? What should be bought from external providers? How should they allocate scarce IT resources? This book answers these questions on the basis of four cases from the financial industry. After describing and analyzing IT portfolios, it investigates the questions of sourcing and technology adoption. Finally, it explores the relationship between mission-critical IT and business operations. The study suggests different ways of analyzing the role applications play in a company rather than the applications themselves. The character of an application may be in the eye of the beholder. Framing applications from both business and IT perspectives is also important, especially in information intensive companies. The Resource Allocation Matrix provides a tool for characterizing four types of IT-management efforts: agile action, firefighting, business transformation and platform construction. / Diss. Stockholm : Handelshögskolan, 2003
12

Performance Analysis and Improvement of 5G based Mission Critical Motion Control Applications

Bhimavarapu, Koushik January 2022 (has links)
The industrial needs in the production of goods and control of processes within the factory keep leapfrogging daily by the necessities to fulfil the needs of the ever-growing population. In recent times, the industries are looking towards Industry 4.0 to improve their overall productivity and scalability. One of the significant aspects that are required to meet the requirements of Industry 4.0 is communication networks among industrial applications. Nowadays, industries from the cross markets are looking to replace their existing wired networks with wireless networks, which indeed brings many use-cases and a lot of new business models into existence. To make all these options possible, wireless networks need to meet the stringent requirements of these industrial applications in the form of reliability, latency, and service availability. This thesis focuses on a systematic methodology to integrate wireless networks like 5G, Wi-Fi 6, etc., into real-life automation devices. It also describes a methodology to evaluate their communication and control performance by varying control parameters like topology, cycle time, and type of networks. It also devises some techniques and methods that can improve the overall performance, i.e., both control and communication performance of the control applications. The method used to implement this work is a case study. This work integrates and tests the industrial applications in a real-life scenario. It is the best effort to bring a unique perspective of communication engineers and control engineers together regarding the performance of the industrial applications. This work tries to verify the suitability of the wireless in mission-critical control application scenarios with respect to their communication and control performance. Software for data analysis and visualization and its methodology for analyzing the traffic flow of the control applications via different wireless networks is demonstrated by varying different control parameters. It is shown that it is challenging for 5G to support the shorter cycle time values, and performance will get better and more stable with the increase in the cycle time of the control application. It is also found that the 1-Hop wireless topologies have a comparatively better control performance than 2-Hop wireless topologies. In the end, it is found that the communication and control performance of the motion control application can be improved by using the hybrid topology, which is a mixture of 5G and Wi-Fi 6, by modifying some key aspects. The thesis work helps to introduce a novel systematic methodology for measuring and analyzing the communication and control applications via different wireless networks. It also gives a better idea for the control engineers in the industry about which cycle times the different wireless networks and their topologies support when integrated with industrial automation devices. It also describes which wireless networks support industrial applications better. It ends with a novel methodology that could improve the performance of the mission-critical motion applications by using existing wireless technologies.
13

Optimisation de la transmission d'images dans les réseaux de capteurs pour des applications critiques de surveillance / Optimization of image transmission in wireless sensor networks for mission-critical surveillance applications

Diop, El hadji Serigne Mamour 17 June 2014 (has links)
L’émergence de petites caméras CMOS et de microphones MEMS, à coût et puissance réduits, a contribué au développement d’une technologie permettant la transmission de flux multimédia (audio, image, vidéo) : les réseaux de capteurs multimédia. Cette technologie, offrant de nouvelles perspectives d’applications potentielles où la collecte d’informations visuelles et/ou acoustiques apporte une plus- value certaine, suscite un intérêt manifeste. Avec des données multimédia, la qualité de service devient désormais une exigence fondamentale pour la transmission dans un environnement contraint en ressources. Dans le contexte spécifique de cette thèse, nous considérons un déploiement par voie aérienne d’une grande quantité de capteurs image pour des applications critiques de surveillance telles que la détection d’intrusion ou des opérations de recherche et sauvetage. La prise en compte de la criticité des applications constitue un aspect important de cette thèse, novateur par rapport aux contributions déjà effectuées dans le domaine. Nos travaux se fondent sur une méthode d’ordonnancement adaptatif de l’activité des capteurs image qui fournit, pour chacun d’entre eux, son ensemble de cover-sets. La détection d’un événement dans le réseau déclenche la transmission d’une large quantité d’informations visuelles, émanant de plusieurs sources pour résoudre les ambiguïtés. L’objectif de cette thèse est d’optimiser cette transmission simultanée d’images causant des désagréments sur le réseau. Nous avons tout d’abord proposé une stratégie de sélection des cover-sets pertinents à activer pour une transmission efficace des images capturées. Cette stratégie, basée sur des critères d’état et de voisinage, assure un compromis entre autonomie et criticité. Une extension multi-chemin de GPSR assure la remontée des images émises des sources sélectionnées au puits. Une seconde contribution, également une approche de sélection, se fonde sur les informations de chemins à 2 sauts pour la sélection des cover-sets. Contrairement à la précédente, elle accorde une priorité à la criticité par rapport à la préservation de l’énergie, même si cette préservation est faite de manière indirecte. Un protocole de routage multi-chemin T-GPSR essentiellement basé sur les informations à 2 sauts est associé à la seconde approche de sélection. Une étude de performances de la mobilité du puits sur les propositions basées sur les informations à 2 sauts constitue notre troisième contribution. / Recent advances of inexpensive and low-power CMOS cameras and MEMS mi- crophones have led to the emergence of Wireless Multimedia Sensor Networks (WMSNs). WMSNs promise a wide spectrum of potential applications which require to ubiquitously capture multimedia content (visual and audio information). To support the transmission of multimedia content in a resource constrained environment, WMSNs may require a certain level of quality of service (QoS) in terms of delay, bandwidth, jitter, reliability, quality level etc. In this thesis, we consider Wireless Image Sensor Networks (WISNs) where sensor nodes equipped with miniaturized visual cameras to provide accurate information in various geographical parts of an area of interest can be thrown in mass for mission-critical applications such as intrusion detection or search & rescue. An innovative and important aspect of this thesis is to take into account the criticality of applications. The network adopts an adaptive scheduling of image sensor node’s activity based on the application criticality level, where each node computes its cover-sets. So, event detection triggers the simulataneous transmission of a large volume of visual data from multiples sources to the Sink. The main objective of this thesis is to optimize this simultaneous transmission of images that can degrade network performance. With this goal in mind, we first proposed a multi-criteria approach to select the suitable cover-sets to be activated for reliable transmission of images in mission-critical applications. The proposed approach takes into account various parameters that affect the image quality at the Sink in a multi-hop transmission network and guarantees a compromise between autonomy and criticality. A modified version of GPSR routing protocol supporting the transmission of multimedia streams ensures the transfer of images from selected sources to the Sink. The second contribution consists in an optimized selection strategy based on 2-hop neighborhood information to determine the most relevant cover-sets to be activated to increase reliability for image transmission. This selection approach prioritizes the application’s criticality. A multipath extension of GPSR, called T-GPSR, wherein routing decisions are based 2-hop neighborhood information is also proposed. A performance study of the sink mobility on proposals based on 2-hop information is our third contribution.
14

Autonomous Recovery Of Reconfigurable Logic Devices Using Priority Escalation Of Slack

Imran, Naveed 01 January 2013 (has links)
Field Programmable Gate Array (FPGA) devices offer a suitable platform for survivable hardware architectures in mission-critical systems. In this dissertation, active dynamic redundancy-based fault-handling techniques are proposed which exploit the dynamic partial reconfiguration capability of SRAM-based FPGAs. Self-adaptation is realized by employing reconfiguration in detection, diagnosis, and recovery phases. To extend these concepts to semiconductor aging and process variation in the deep submicron era, resilient adaptable processing systems are sought to maintain quality and throughput requirements despite the vulnerabilities of the underlying computational devices. A new approach to autonomous fault-handling which addresses these goals is developed using only a uniplex hardware arrangement. It operates by observing a health metric to achieve Fault Demotion using Recon- figurable Slack (FaDReS). Here an autonomous fault isolation scheme is employed which neither requires test vectors nor suspends the computational throughput, but instead observes the value of a health metric based on runtime input. The deterministic flow of the fault isolation scheme guarantees success in a bounded number of reconfigurations of the FPGA fabric. FaDReS is then extended to the Priority Using Resource Escalation (PURE) online redundancy scheme which considers fault-isolation latency and throughput trade-offs under a dynamic spare arrangement. While deep-submicron designs introduce new challenges, use of adaptive techniques are seen to provide several promising avenues for improving resilience. The scheme developed is demonstrated by hardware design of various signal processing circuits and their implementation on a Xilinx Virtex-4 FPGA device. These include a Discrete Cosine Transform (DCT) core, Motion Estimation (ME) engine, Finite Impulse Response (FIR) Filter, Support Vector Machine (SVM), and Advanced Encryption Standard (AES) blocks in addition to MCNC benchmark circuits. A iii significant reduction in power consumption is achieved ranging from 83% for low motion-activity scenes to 12.5% for high motion activity video scenes in a novel ME engine configuration. For a typical benchmark video sequence, PURE is shown to maintain a PSNR baseline near 32dB. The diagnosability, reconfiguration latency, and resource overhead of each approach is analyzed. Compared to previous alternatives, PURE maintains a PSNR within a difference of 4.02dB to 6.67dB from the fault-free baseline by escalating healthy resources to higher-priority signal processing functions. The results indicate the benefits of priority-aware resiliency over conventional redundancy approaches in terms of fault-recovery, power consumption, and resource-area requirements. Together, these provide a broad range of strategies to achieve autonomous recovery of reconfigurable logic devices under a variety of constraints, operating conditions, and optimization criteria.

Page generated in 0.0917 seconds